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Abstract. A general projection method for decomposing the kinetic energy of an N-particle 
system into collective and intrinsic parts defined respectively on the orbits and the orbit 
space of a Lie transformation group is given. Specific targets of the application of the 
method are the kinematical group GL+(3, R) and the quotient set GLf(3, R)/S0(3) for their 
importance in microscopic formulation of nuclear collective motions. For these two cases 
the orbit spaces in the particle configuration space are shown to be identifiable with the 
Grassman and Stiefel manifolds of 3-planes and 3-frames respectively. Some problems 
related to expressing the kinetic energy in terms of vector fields on these manifolds are 
resolved. In particular, non-integrable coordinates previously used by one of the present 
authors is shown to arise from the imposition of unacceptable conditions. Finally we 
consider the corresponding decomposition of the N-particle Hilbert space. It is proposed 
that an appropriate basis function for the GL+(3, W) collective model is provided by an 
irreducible representation of the boson SU(6) group. 

1. Introduction 

The phenomenological nuclear collective models of Bohr-Mottelson (Bohr 1952, Bohr 
and Mottelson 1953, 1975, Bohr et a1 1976) have had considerable success in 
accounting for various rotational and vibrational features in certain nuclei. In attempts 
to formulate these models microscopically many authors have adopted a geometric 
viewpoint. The objective in this approach is to extract the model Hamiltonian by using a 
Lie transformation group to effect a change of coordinates on the N-particle configura- 
tion space W3N from the particle to a set of collective and intrinsic coordinates. The 
resulting decomposition of the total particle kinetic energy into collective and intrinsic 
parts then defines the model kinetic energy. The collective potential energy will then 
have to be obtained from other considerations. 

To describe the rotational motion Bohr (1954), Villars (1957), Scheid and Greiner 
(1968), Villars and Cooper (1970) and Rowe (1970) used orbits of the kinematical 
group SO(3) as the collective submanifold of W3”. This work was later generalised 
independently by many authors to the simpler and physically more interesting case of 
the coupled rotation-vibrational motion by using the groups GLC(3, W) (Cusson 1968, 
Gulshani and Rowe 1976, Gulshani 1977,1978, Buck eta1 1979) and SL(3, R) (Ogura 
1973, Weaver et aZ 1976) and the quotient set GLC(3, R)/SO(3) (Zickendraht 1971, 
Dzyublik et aZ1972, Morinigo 1972,1974, Filippov 1974, Ovcharenko 1976, Vanagas 
1977). Although the final results of these GL+(3, W) transformations are similar, 
different authors have used different decompositions of and different decom- 
positions of the tangent space to R3N, i.e. the particle momentum space. 
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Recently projection operators for the Lie algebras sa(3) and gl(3, R) were given and 
it was shown (Gubhani 1981) that these operators provide a simple and a transparent 
means of effecting the decomposition of the particle momenta and the total kinetic 
energy. The purpose of this paper is firstly to generalise this projection method to an 
arbitrary Lie group using some elementary concepts in differential geometry; and 
secondly to rederive the GL'(3,R) results in this general framework? and analyse 
carefully the various problems raised in the previous paper. In Q 2 we review briefly the 
geometric method of constructing collective and intrinsic submanifolds of R3N and 
vector fields on them. These manifolds are identified respectively with the orbits and 
the orbit space of a Lie transformation group modulo an isotropy subgroup H. The 
decomposition of the tangent space to into subspaces tangent and normal to the 
collective submanifold using a projector operator is then carried out in §3. The 
corresponding decomposition for the total particle kinetic energy is then obtained. In 
this section we also discuss various other possible decompositions. 

In 3 4 these results are specialised to GL'(3, R)/H. In § 4.1 it is shown that, with 
H = e, the identity element in GL+(3, W) and H = S0(3), the intrinsic submanifold of 

is identifiable respectively with the Grassman manifold of 3-planes and the Stiefel 
manifold of 3-frames in RN. In 0 4.2 the gl(3, W) projector is constructed and the 
decompositions of the particle momenta and the total kinetic energy into collective and 
intrinsic parts with respect to the different sets of collective coordinates are derived. 
Different sets of basis functions for the diagonalisation of the collective Hamiltonian are 
discussed. In particular it is suggested that irreducible representations of SU(6), 
employed in the interacting boson model of Arima and Iachello, provide suitable basis 
functions for the GL'(3, R) collective model considered here. Finally in 9 4.3 we use 
diff eomorphisms between the Grassman and the Stiefel manifolds and quotient spaces 
of SO(N)  to express the intrinsic kinetic energy in terms of vector fields on SO(N). 
Some problems related to doing this are resolved. In particular it is shown that 
non-integrable coordinates used previously arise from imposing incompatible con- 
straints. 

2. Lie transformation groups and collective-intrinsic submanifolds of R3N 

The configuration of a system of N discrete particles in the three-dimensional physical 
space is given by a point in the 3N-dimensional Euclidean space R3N, known as the 
configuration space. R3N is a manifold as well as a vector space of dimension 3N. A 
natural (global) coordinate system (atlas of charts) on R3N is commonly chosen to be the 
rectangular Carte2ian coordinates {x"'; i = 1,2 ,3 ;  1 S n 6 N } .  The particle momenta 
prli 5 -ifz(a/ax"') are (tangent) vector fields on R3N and the set { a / a x n i }  span, at each 
point x E R3N, the 3N-dimensional tangent vector space TxR3N to W3? R3N is a flat 
Riemannian manifold with the Riemannian metric g defined by the usual Euclidean 
inner product (see, among others, Brickell and Clark 1970, p 161, Matsushima 1972, 
p 40, Boothby 1975, p 184) 

+ Recently Guillemin and Sternberg (1980) have given the problem of collective motion a mathematical 
exposition in the framework of the momentum map. 
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The total kinetic energy of the system is then given by the Laplacian 

where M is the mass of each particlet. 
The attempt in the geometric approach to realising collective models microscopic- 

ally is to seek an appropriate direct-product decomposition R3N = & x JCCintr of R3N 
into collective, AG, and intrinsic, ./Uintr, submanifolds. The corresponding direct-sum 
decomposition 

(where T'G is the tangent space to AG spanned by some (collective) vector fields given 
below and (TAG)' is the vector space complement) then defines the decomposition of T 
in (2.2) into collective and intrinsic parts. The expressions obtained for these separate 
parts is observed to depend crucially on the choice of (TAG)'. This choice can be made 
in a number of ways. For example, we may set ( TAG)' = TAinv in which case p? are 
vector fields on Aintr. In this paper we choose it to be the normal space to AG, i.e. we set 
(TAG)' = (T#G)I,  the orthogonal complement of T&G in TxR3N. In this case pZv are 
vector fields along .Mintr but not necessarily on ./Uinv because, in general, (TAG)' # 
TAintr as we shall see in g4.3. This choice has the advantage that the resulting 
orthogonality$ 

g(p2I1, p?) = 0, (2.5) 

with g as in (2.1), simplifies the decomposition of the kinetic energy T in (2.2). For then 
one readily obtains the result (see § 3) 

T = T ~ I I  + Tint, (2.6) 

with no cross terms between the collective, Tmll, and intrinsic, Tinu, parts of T. We shall 
be working in the basis sets {x" ' }  and {a/ax"'> for convenience and to ensure that all 
functions and vector fields used are well defined on R". 

Now a natural way of realising collective, AG, and intrinsic, Aintr, submanifolds of 
R3N is to identify them with the orbits and the orbit space respectively of a Lie group 
which acts on R3N as a Lie transformation groups. Let us now briefly review some 
aspects of the action of a Lie transformation group on a manifold such as R3N 11. 

A Lie group G acts on R3N (on the left) as a Lie transformation group when one is 
given a mapping 

(2.7) CP: G x R3N + R", x = CP(g, a )  

t Note that (2.2) is equivalent to the so-called Laplace-Beltrami operator by virtue of the flatness of R3N (cf 
(2.1)) (see, for example, Hermann 1968, Gulshani and Rowe 1976, appendix I). 
$ This orthogonality was first pointed out and used in this context by one of the present authors (Gulshani and 
Rowe 1976, appendix 111, Gulshani 1977). 
8 This geometric approach is to be compared with the method of spectrum generating algebras (Dashen and 
Gell-Mann 1965, Dothan et al1965, Ui 1970, Hermann 1972, Weaver and Biedenham 1972, Weaver et a1 
1973, 1976, Gulshani and Rowe 1976) and of dynamical groups (Dyson 1966, Arima and Iachello 1975, 
1976, 1978, Dzholos et al 1976, Iachello 1979). 
11 For more detail refer to, among others, Auslander and Mackenzie (1963), Tondeur (1969), Brickell and 
Clark (1970), Warner (1971), Matsushima (1972), Sagle and Walde (1973) and Boothby (1975). 
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for f ER", g E G and some x E W3N, such that, for gl, g 2 ~  G, @(g1, @(g2, f)) = 
@(g1g2, 2) and, for the identity element e E G, @(e, f) = 2. The set of points {x = 
@(g, f)lx E W", all g E G} is a subset of W3N called the orbit of 2 under the (left) action of 
G. The action of G in  (2.7) is said to be effective if the identity e E G is the only element 
for which @(g, 2) = 2. In general G does not act effectively and one may then find (at 
each point Z) a subgroup H of G for which f is a fixed point, i.e. +(h, 2) = f for all h E H. 
The subgroup H is called the stability or the isotropy subgroup of G at 2. If H is a closed 
(Lie) group, then the set of all left cosets G/H = {gHlg E G} is a C" manifold of 
dimension given by dim(G/H) = dim G -dim H. G/H is called the quotient manifold, 
the coset or the factor space+. Evidently G/H acts effectively on R3". 

One can now prove the following theorem (Brickell and Clark 1970, p 250): Let G be 
a Lie transformation group of and H the isotropy closed subgroup at the point 
f E R3N. Then the C" injective mapping 

$*: G/H + R3N, (2.8) 

defined by 

x E &(gH) 5 @(gH, f )  = @(g, @(H, 2)) = @(g, f) 

where @ is as in (2.7), is an imbedding of the quotient manifold G/H into R3". In other 
words, each orbit Jz;lG,H = {X = @(gH, 2)lg E G} of f is a submanifold of W3" diffeomor- 
phic to G/H. The diffeomorphism in (2.8) sets up an isomorphism between the tangent 
spaces T,(G/H) and T#G/H to G/H and the orbit J z ; l G / ~  at each pair points c = gH and 
x = &(gH). The imbedding, on the other hand, ensures that T#G/H is a subspace of 
T,R". The correspondence between vector fields on G/H and &/H is given by the 
injective mapping (the differential of A) 

$: : To(G/H) + TAG/H (2.9) 

where 0 = e H  = H is the identity element in G/H. @ in (2.9) is defined as follows: for 
every tangent vector Yo E To(G/H) and any C" real-valued function f on G/H we have 
$? (YO) E T*J~~G/H and 4; (Yo)(f) Yo(f0k). More specifically, let r be the dimension 
of G/H and (y*,  . . . , y') a set of coordinate functions on G/H so that the r tangent 
vectors {(a/ay*)oIl s a s r }  span To(G/H). Then the tangent vectors (Xa) ,  E TdG/H, 
corresponding to (a/aya)o and expanded in the basis vectors {(a/ax"')x) of T,Iw3N, are 
given by# 

(2.10) 

where the expression in the square bracket is to be evaluated at the identity element 0 
after the indicated differentiation. The set of tangent vectors {(Xa)xll  d a s r }  clearly 
spans T ~ G ~ H  as 4; is an injection. 

Finally, we observe that T ~ G / H  and the quotient vector space d ~ / d ~ ,  where JBG 
and dH are respectively the Lie algebras of G and H, are isomorphic. This follows 
immediately from the natural isomorphism that exists between J B G / J B H  and To(G/H) 

4- G/H is a homogeneous space of G since G acts transitively on G/H. A transitive action is one for which any 
two elements of the set can be connected by some element of G. 
t Summation over repeated indices is assumed throughout. 
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(Matsushima 1972, p 236)t. These isomorphisms arise in a simple way. The Lie 
algebra d o  of G is defined as the set of all left-invariant vector fields on G which are 
determined uniquely by their values at e E G by left translations (Brickell and Clark 
1970, p 218, Matsushima 1972, p 188, Boothby 1975, pp 119, 154). One thereby 
arrives at the isomorphism between d o  and T,G. On the other hand, when the 
isotropy subgroup H is the identity e E G, one can show (Brickell and Clark 1970, pp 
244,248, Matsushima 1972, p 236) that the set of vector fields X, in (2.10) induced on 
AG form a Lie algebra $33~ isomorphic to the Lie algebra of right-invariant vector fields 
on G. Again these right-invariant vector fields are determined uniquely by their values 
at e E G by right translations. The basis vectors of dG and BG are often called the 
infinitesimal generators and operators of G respectively. When H # e, the above 
isomorphisms still exist but the left- and right-invariant vector fields on G/H do not 
because G/H is not a group unless H is a normal (invariant) subgroup. 

We now define a collective submanifold of R3N to be the orbits A G I H  of G/H. The 
collective coordinates and vector fields are then given respectively by a set of appro- 
priate coordinate functions {yell < a d r} on G/H and the corresponding vector fields 
X, in (2.10) on A G / H .  The intrinsic submanifold Atintr, which complements AG/H in the 
direct-product decomposition dN = AG/H x Aintr, is then naturally identified with a 
quotient space of R3N as follows. The action of G defines an equivalence relation on 
R3N: each x in (2.7) is equivalent to f and, hence, f determines an equivalence class. 
Thus an orbit of G is an equivalence class. The set of all equivalence classes of G in R3N 
is a quotient space called the orbit space of G and denoted by R3N/G (Brickell and Clark 
1970, pp 91, 97, Boothby 1975, pp 60, 93). Aintr is, therefore, naturally identifiable 
with the orbit space R3N/G of G. Thus, if {S"ll s u d 3 N  - r }  is an appropriate set of 
(intrinsic) coordinates on AIintr = R3N/G, each orbit (2.7) of G may be parametrised 
according to 

x =@(B(y"), f(S")), B E G/H, f E d i n t r .  (2.11) 

The intrinsic vector fields are then given by vector fields on &intra 

3. Decomposition of momenta and kinetic energy 

We now seek a decomposition of the particle momenta pni and the total kinetic energy T 
in (2.2) into collective and intrinsic parts and expressed in terms of the r collective 
vector fields X, in (2.10) on A G / H  and some convenient set of intrinsic vector fields on 
Aintr. As was explained in $ 2 ,  it is convenient, for this purpose, to choose the 
direct-sum decomposition$ 

where ( T , / t l ~ / H l )  is the (3N - r)-dimensional orthogonal vector space complement of 
T&GIH in TxR3N, i.e. the normal space to A G / H .  According to the procedure given 
previously (Gulshani 1981) the decomposition (3.1) is accomplished simply in terms of 

t From a general theorem on vector spaces (Hoffman and Kunze 1961, p 323) one knows that the quotient 
space &/& is isomorphic to any subspace complement of &H in do, i.e. d~ = &@(&/d~) (see also 
Sagle and Walde 1973, p 151). 
+Observe that, in general, (T#O,H)' # Tdint,, i.e. Jtlintr is not an integral manifold of the distribution 
determined by the normal space ( T d G / H ) '  (cf 5 4.3). 
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the projection operator f on TxJtlG/H 

r: TxR3N + T,J&/M (3.2) 

as follows. Since 
induces a metric h on J ~ ~ G / H  defined by 

is a submanifold of R3N, the Riemannian metric g on R3N in (2.1) 

h a p  E g(X,, X , )  = XyXg"ig,i,nIj = X y X ;  l s a , p s r  (3.3) 
where X $  are defined in (2.10). If the metric tensor h is non-degenerate, the matrix 
representation of the projection operator r in (3.2) with respect to the basis {a/ax"'}for 
TxR3N is then readily constructed (cf Hoffman and Kunze 1961, p 232, Gulshani 1981). 
One obtains 

fn i ,mi  E XzihaBXmi P l s a , p s r  (3.4) 

where the inverse metric tensor ha' is defined by h"'h,, = 8;. From the definition (3.4) 
it is easy to show that r meets all the requirements of the projector (3.2): r is symmetric, 
i.e. I',Ii,mj = l'mi,fli?, and idempotent, i.e. 

r2. ni,mj . = r  ni.nk . _  r -  nk,mi .=r  ni.mi . . (3.5) 

and 
rfli.mixnmi =x: 

f effects the projection in (3.2) according to 

(3.6) 

(3.7) 

where definitions (2.10) and (3.4) have been used. When evaluated at point x, the 
right-hand side of (3.7) is clearly a vector in T&G/H. Defining the action of r on X,  in 
(2.10) by 

(3.8) 
a r (x, ) = x: r (-) ax 

we observe from (3.7) that (cf (3.6)) 

rw,) = xct. (3.9) 

This shows that r acts in T ~ G I H  as a unit operator. Since r is idempotent, rank 
r = Tr r = Cni rni.ni = ZL = 1 = r = dim = dim( TAGlH). Thus the mapping in 
(3.2) is onto. 

The decomposition (3.1) is then given simply by$ 

a pni -ih .= r . , ax nr ni,miPmj + 1ini.mipmi 

= -iiiX;'hePXP + hni,mjpmi l s a , p < r  (3.10) 
- = p n i  col1 +py 

-1 This property is evidently important since otherwise r is only left or right idempotent. The order of 
multiplication then becomes a problem. An example of this situation arises in the construction of a projection 
operator for linear irrotational flow. 
$Note that combinations of different projectors [see, for example, Pease 1965) may be used to effect a 
simultaneous decomposition of the space into different collective subspaces, as for example, into centre-of- 
mass and other collective spaces (cf appendix 2). 
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where (3.7) has been used and 

Ani.mj' 6nmSij -rni,mj- (3.11) 

Clearly (T,J&/H)I is the null space of r and A projects TxW3N onto ( T ~ G / ~ ) ' -  along 
T ~ G I H .  From the relation 

rni,mkAmk,mj= 0 (3.12) 

(cf (3.5)) it follows that equation (3.10) gives the decomposition of the particle momenta 
pni into mutually orthogonal collective, p z l l ,  and intrinsic, p?, parts, i.e. 
g(pCyI1, P E ! ~ )  = 0. The second line in (3.10) gives the expression for p:" in terms of the 
collective vector fields X,. 

In squaring (3.10) to obtain the corresponding decomposition of the total particle 
kinetic energy (2.2) into collective and intrinsic parts, it is important to note that rni,mj 
are C" real-valued functions on W". Thus r and a/axni and hence p 2 "  and p y  do not 
commute. However, a simple rearrangement of terms, using commutators, yields 

(3.13j 

We may now use (3.7) to express the collective kinetic energy Tcoll in terms of the 
collective vector fields X, : 

(3.14) 

In connection with the definitions of Tall and Tint, in (3.13) it is observed from (3.10) 
that 

and 

Thus, in general, 

as might be expected from the decomposition (3.10) because, in general, 

in spite of the orthogonality g(pZ",  p z : )  = 0 (cf 0 4.2 and appendix 2). 
Let us now consider Tint, in (3.13). In spite of the absence of any apparent coupling 

terms in (3.13), one expects Tcoll and Tint, to be somehow coupled. To reveal this 
coupling and to facilitate other physical considerations it is desirable to seek a complete 
set of vector fields { Z , l l s  v s 3 N - 4 )  on JGCintr and express Tint, in terms of them. 
However, Aintr is not, in general, an integral manifold of the distribution R determined 
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by the normal space (T&O/H)' ,  i.e. (T&~/H)'  # TAintrt. Thus, in general (Z,), are 
not in (T,JZG/H)~. Nevertheless, one may use the projector A in (3.11) to project (Zv)x 
into (T*,/tlc/H)' and thereby obtain suitable vector fields in terms of which Ti,,, can be 
expressed. We shall use this construction in 3 4.3 where we consider the special case 
G = GL'(3, R). In concluding this section we observe that the method presented here 
can easily be generalised to other spaces like RkN for arbitrary integer k(cf Eichinger 
1977, Vanagas 1977) and other real and complex Riemannian manifolds. 

4. G = GL+(3, R) The rotation-vibrntional motion 

In this section we apply the ideas of the previous section to G = GL'(3, R). W e  do this in 
some detail to emphasise the generality of the concepts used and to expose the pitfalls 
that may have gone unnoticed in some of the previous derivations. It has been shown 
previously (Gulshani and Rowe 1976,1978, Gulshani 1977,1978,1981, Gulshani and 
Volkov 1981) that the general linear group GL'(3, R) is the kinematical group of 
collective monopole and quadrupole vibrations as well as irrotational and rigid rota- 
tional motions$. These motions of an N-particle system are realised by identifying the 
collective and intrinsic submanifolds of R3N with the orbits and the orbit space of 
GL'(3, 88) according to § 2. Now GL'(3, R) is isomorphic to the set of all (3 x3) 
matrices with positive determinants and so acts naturally in R3N by matrix multi- 
plication. Furthermore, we show in § 4.1, that for this action the isotropy subgroup H 
can be chosen the identity element in GL'(3, R)$. The orbit equation (2.11) then 
becomes 11 

(4.1) 

with i , c r=t ,2 ,3 ;  l s w s 9 ;  l c n s N ,  l s r ( T 3 N - 9  and g~GL'(3,88). We note 
that the collective manifold JUG=, i.e. the orbits of GL+(3, R), has dimension nine. 
According to § 2 the intrinsic manifold Ai,,* in rw"" = AGL x dint, is identified with the 
orbit space LR~~/GL'(~,  R) with f E J U ~ , , , =  R3N/GL+(3, R). 

4. I. Collective and intrinsic manifolds 

We now show that the isotropy subgroup H of GL'(3, R) can be chosen the identity 
element in GL'(3, R) and that the orbit space Aintr = R3N/GL'(3, 88) can be identified 
with a homogeneous space of the orthogonal group SO(N), called the Grassman 

.i. In fact from the set {Xa} in (2.10) one can always construct a set of vector fields which span ( T & G / ~ ) ~  (see 
appendix i). But this set is, in general, not involutive. It then follows from the Frobenius' theorem 
(Auslander and MacKenzie 1963, p 147, Brickell and Clirk 1970, p 197, Matsushima 1972, p 167, Boothby 
1975, p 159) that 0 is non-integrable, i.e. there is no submanifold of RgN to which (T&G/~)' is a tangent 
space. 
t: The more manageable two-dimensional collective motions described by G = GL"(2, R) can be similarly 
treated (see Bouten and Van Leuven (1977) for a different treatment). 
8 Since the origin is a fixed point of this action, we exclude (0) E R3N as a first step in achieving an effective 
action. 
I/ Although the centre-of-mass motion is excluded from consideration in this paper, it can easily be 
incorporated in our journalism here. Its effect on our results here is obtained simply by letting N + N - i 
everywhere and regarding all coordinates and momenta to be defined relative to thoseof the centre of mass (cf 
Gulshani and Rowe 1976). 
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manifold of 3-planes?. An important step in this realisation is to use the vector space 
structure on Ff" and to recognise (Surkov 1967, Dzyublik et al 1972, Morinigo 1972) 
that the 3N coordinates xn i  can be regarded as three vectors x i  in an abstract 
N-dimensional real vector space @. The three linearly independent oriented vectors 

define what is known as an oriented 3-frame in @. Each 3-frame determines a 
three-dimensional subspace of @, called a 3-plane. Those 3-frames (4.2) which 
determine the same 3-plane, i.e. which are equivalent, are seen to be connected by 
GL+(3, R) as in (4.1). This is, of course, an equivalence relation on the set of all 
3-frames. The set of all oriented 3-planes, i.e. the set of all three-dimensional subspaces 
of @, can easily be shown, see below, to form a manifold, called the Grassman manifold 
of oriented 3-planes denoted by G(3, N) (see Auslander and MacKenzie 1963, p 176, 
Brickell and Clark 1970, pp28, 92, 252, Matsushima 1972, p241, Boothby 1975, 
pp 63,167)$. It therefore follows that the intrinsic manifold Mint, of which 3 in (4.1) is a 
point can be identified with the Grassman manifold of 3-planes G(3,N). With the 
interpretation of Aintr as a manifold of oriented 3-planes we see that the isotropy 
subgroup H of GL+(3, R) in (4.1) is the identity elements. Therefore, the collective 
rotation-vibration submanifold AGL of R3N is identified with the 9-dimensional orbits 
of GL+(3, R) as in (4.1). 

It is now simple to show that Aintr = G(3, N) is a manifold of dimension 3(N-3) 
diffeomorphic to a quotient manifold of the orthogonal group SO(N). Evidently 
G(3, N) is a homogeneous space of GL+(N, R) since GLC(N, R) acts transitively on 
G(3, N). Thus one can readily identify G(3, N) with a quotient space of GL+(N, R) 
(Matsushima 1972, p 241, Boothby 1975, p 167). Instead, however, it is more useful 
for practical purposes to use the inner-product structure on I@ and identify Aint, = 
G(3,N) with a quotient space of SO(N). Because of the equivalence relation on 
G(3, N) given by the action of GL(3, R) in (4.1), an arbitrary 3-plane, i.e. a point of 
G(3, N), is equivalent to some oriented orthonormal 3-plane. An orthonormal 3-plane 
defined by (cf. (4.2)) the (3 x N )  matrix 

satisfies the scalar product 

N 
CY, p = 1,2,3. (4.4) (f", p) fn"fn5 = p 3  

n = l  

t It ought to be mentioned that some interesting results on the properties of the intrinsic space have been 
obtained by Buck et a1 (1979) using the method of dyadics. 
.t The properties of Grassman manifolds have been examined in detail in the mathematical literature (see 
Wolf 1963, 1967, Porteous 1969). 
8 If one identifies Ai,, with the manifold of 3-frames, called the Stiefel manifold, then the isotropy subgroup 
of GL+(3, R) is SO(3) (see 0 4.3 and appendix 2 for details). 
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Now SO(N)  acts transitively on G(3, N ) ,  via matrix multiplication, taking one 
orthonormal 3-plane into another?. The isotropy subgroup H of SO(N) at the point 

= (110) E G(3, N ) ,  
1 0 . .  

0 0 1 0 . , .  0 

where I is the unit (3 x 3) matrix, is clearly given by 

H = ( t  i) A E S O ( ~ ) , B E S O ( N - ~ )  

because w H =  (AlO) is again an orthonormal 3-frame which lies in the 3-plane 
determined by w .  Since H is isomorphic to the direct product S0(3)xSO(N-3) ,  
it follows that G(3, N )  = Jt,,,, is diffeomorphic to the quotient manifold 
SO(N)\(S0(3) x SO(N - 3)) of right cosets with dimension = dim SO(N) 
--dim SO(3) -dim SO(N-  3) = 3(N - 3) (Clark and Brickell 1972, p 252, Matsushima 
1972, p 241, Boothby 1975, p 358). 

It then follows from the above arguments that the configuration space R3N decom- 
poses into the product = x dint, = GL’(3, R) X G(3, N ) .  Equation (4.1) is then 
rewritten as 

.Y ‘I = g,,R,,, g E GL’ (3, R), R E SO(N)\(S0(3) X SO(N - 3)) (4.5) 

R A p ,  = &p CY, p = 1 ,2 ,3 .  (4.6) 

with 

From equations (4.6) and (4.5) we then have 

Qii E Mx ni = Mgingju (4.7) 

where Q is the mass quadrupole tensor of the N-particle system. Equation (4.7) defines 
in R3N only six of the nine matrix elements of g E GL’(3, R). The remaining three 
elements can be defined in R3N almost arbitrarily (see 0 4.3 for a forbidden choice). 

4.2.  Collective momenta and kinetic energy 

The direct-sum decomposition 

for the particle momenta pni  and the corresponding decomposition of the total kinetic 
energy into collective and intrinsic parts are now easily obtained from the procedure 
given in 04.3. We first need to compute the infinitesimal operators t of GL’(3, W) on 
AIGL according to the prescription (2.10). A natural coordinate chart on GL’(3, R) is 
given by the elements gij of the matrix g E GL’(3, R). Using the rule (2.10) and 

-: Note that this is a right action arising from our choice of the 3-frames to be represented by three rows rather 
than three columns (cf (4.3)). 
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equation (4.1) (or 4.5)), we have 

The set { t i j }  spans at each x E R3N the nine-dimensional subspace TAGL of TxR3N. 
Comparing (4.9) with (2.10), we find that the components XGk of tij with respect to the 
basis {a /ax f lk }  for T,R3N are given by 

x;? = X n i &  ik*  (4.10) 

The induced metric h on the GL'(3, R) orbit  JUG^ is then computed from (3.3) and 
(4.10) to be 

(4.11) hij,lk E g(tij, t l k )  =M-'Qi/sjk 

with the inverse 

= MQ;'Sjk (4.12) 

where 0-' is the inverse of the mass quadrupole tensor Q defined in (4.7). Q-' can 
easily be expanded in terms of minors to obtain 

1 
QZ' =- [sij(Tr 0)' - Sij  Tr Q2 - 2(Tr Q)Qij + 2Q%] 

" 2 det Q (4.13) 

whence 

det Q = i[(Tr Q)3 - 3(Tr Q)(Tr Q2) + 2 Tr Q3]. 

From the definition (3.4) and equations (4.10) and (3.12) the projection operator 

F = TxR3N -+ T A G L  

is then given by the (3N x 3 N )  matrix 

where 
rnm =Mxn'Qlk 1 x mk . (4.14b) 

From (4.7) and (3.14) we can easily ascertain that r has the requisite properties: it is a 
symmetric, idempotent matrix and rank T = Tr F = 9 = dim GL'(3, R) = dim( T A G = ) .  
In ( 4 . 1 4 ~ )  we observe the curious splitting of T into the product of the Kronecker delta 
function and the ( N x N )  matrix r. From (4.14b) it can easily be shown that is 
symmetric and idempotent and rank r = Tr r = 3. What geometric property underlies 
the splitting in ( 4 . 1 4 ~ )  is not clear yet?. 

t As a consequence of this splitting, however, one can easily show that the set of all matrices f' in ( 4 . 1 4 ~ ~ )  is 
diffeomorphic to the Grassman manifold SO(N)\(S0(3) x SO(N - 3)). 
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The decomposition (4.8) of the particle momentum space is now obtained simply by 
substituting ( 4 . 1 4 ~ )  into (3.10). One findst 

a 
p = -ih ni = rnmpmi + Anmpmi =.pZl1 +pi,l" ( 4 . 1 5 ~ )  

ax nr 

where 

pcol' ni I rnmpmi = -ihMXnrQL1fki (4.156) 

and 

A,, = s,, - rnm. (4.16) 

The corresponding decomposition of the total kinetic energy into collective and 
intrinsic parts is obtained by substituting ( 4 . 1 4 ~ )  into (3.13). One finds 

where 
1 1 T. =---pnirnmPmi =- 1 

- 2M 2M ni 

( 4 . 1 7 ~ )  

(4.176) 

and 

1 
T =-pnirnmpni = -$h2[tkiQi:tr i  + N Q c l ; , ' t k i ] .  ( 4 . 1 7 ~ )  

It is important to note the definitions of Tall and Tin,, in (4.17) and their relations to pz l l  
and p? in (4.15). Tint, = (1/2M) Zni  ( p n i  ) because the term pzllp? = 0 but Tcoll # 
(1/2M) X n i  (pZ11)2 because p!:'pZ'' f 0, the orthogonality condition g ( p Z 1 ' ,  = 0 
notwithstanding. 

The physical content of the expressions (4.156) and ( 4 . 1 7 ~ )  for pZ1' and Tcoll is 
revealed by a transformation to the mass quadrupole principal axes. These three axes, 
which will be indicated by suffixes A, B and C, are given by the diagonalisation of the 
symmetric second-rank tensor Q in (4.7) 

rAirBjQij SABIA A, B 1 , 2 , 3  (4.18) 

where r E S0(3)/D2 and D2, the dihedral group (Hamermesh 1962), is the isotropy 
discrete subgroup of SO(3) consisting of the identity element and rotations through 
angle 7r about each of the three axes leaving the diagonal matrix with elements IA 
invariant. In (4.18) IA are the three mass quadrupole principal moments defined by 

=Oil - 2M 

intr 2 

(4.19) 

The transformation of Tcoll in ( 4 . 1 7 ~ )  to the quadrupole principal axes is clearly 
equivalent to choosing on the GL'(3, R) manifold the coordinate system given by the 
decomposition (Gantmacher 1960) 

gia IAiSATAAcr SA = ( I A / h f ) 1 ' 2  (4.20) 

?: Note that the centre-of-mass projector is N-' a,, Si, 
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with g E GL+(3,R) and r, P E  S0(3)/Dz, and repeating the above analysis starting from 
(4.9). We have chosen SA in (4.20) so that equations (4.7) and (4.18) are satisfied. 
Moreover, for uniqueness of the decomposition (4.20) we choose the ordering I3 3 I l  3 

I z .  With two sets of Euler angles {@A) and ( 4 ~ )  and the three parameters SA as 
coordinates the new set of nine infinitesimal operators of GL'(3, R) are computed from 
(2.10), (4.1), (4.20) to be the orbital angular momentum 

the dilation momenta 

the shear angular momentum 

(4.21a) 

(4.21b) 

( 4 . 2 1 ~ )  

where E is the permutation symbol and tAB are the principal-axis components of til in 
(4.9) defined by 

tAB rAirBjtij X n A  (4.22) 

with x n A  given in (3.18) and a / a x n A  = tAi a / a x n i .  The operators in (4.21) are related to 
their respective space-fixed components as follows 

Li = rAiLA 2 i  = r A i z A  tA fAA = TAirAifij. (4.23) 

Equations (4.21) are seen to be related in a linear manner to the two sets of basis vectors 
{LA,  fA, 2 ~ )  and {tAB) for T X ~ G L .  

From the basis set of operators in (4.21) one can now construct a projection matrix 
operator similar to i? in ( 4 . 1 4 ~ )  and proceed to obtain p? and TWI1 in (4.15b) and 
(4 .17~)  in terms of the operators (4.21). This calculation is not reproduced here 
because the result is more easily obtained by expressing p$" and Tcoll first in terms of 
{tAB} and then in terms of the set {LA,  tA, zA}. The result for TWll is? 

TWII = Tvib Trot ( 4 . 2 4 ~ )  

where 

(4.246) 

and 

LAB Lc z A B  ~ 5 t c  A, B, C in cyclic order. 

In (4.24b) we have used the identity tA = tAA = 21A alar, obtained from the chain rule 
a/aIA = (ax"'/aIA)(d/ax"') and equations (4.20) and (4.5). The collective kinetic energy 

t pz" can be written as a sum of two terms, one describing irrotational and the other rigid flow. The detail of 
this has been given elsewhere (Gulshani and Rowe 1976,1978, Gulshani 1978, Gulshani and Volkov 1981). 
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(4.24) has been derived previously by the present authors and others who used 
coordinate transformations and different decompositions of R3N and T, R3N from the 
one given here (Zickendraht 1971, Dzyublik et a1 1972, Gulshani and Rowe 1976, 
Ovcharenko 1976, Vanagas 1977, Gulshani 1978,1981, Weaver et al1976, Buck et a1 
1979). As may be observed Tcoll in (4.24) represents physically the kinetic energy of 
vibrational and rotational motions. It is also reducible to that of Bohr's nuclear 
collective model (Bohr 1952) as shown previously (Zickendraht 1971, Gulshani and 
Rowe 1976, Gulshani 1978, Gulshani and Volkov 1981). With the help of (4.13) the 
relation of T,,, in (4.24) and ( 4 . 1 7 ~ )  to the spectrum-generating algebras cm(3)- 
Rh+g1(3, R)={Q, t } ,  gl(3, R)={t} and R6+so(3)={Q, L }  also becomes apparent 
(Gulshani and Rowe 1976). 

The Hilbert space for the GL+(3, R) collective model ( 4 . 1 7 ~ )  and (4.24) is spanned 
by a set of square-integrable functions defined on GL'(3, R). From (4.24) and (4.20) 
this set is seen to be given by the functions fsA(IA)9hK(r)9.&(r) where the 9 are the 
Wigner rotation matrices and f some square-integrable functions of la labelled by 
indices A. Because of the invariance with respect to the DZ group in (4.20) and (4.24), 
the symmetrised basis functions become (cf Bohr 1952, Kumar and Baranger 1967, 
Eisenberg and Greiner 1970a, p 147, Bohr and Mottelson 1975, p 178) 

with r, f E S0(3) /D2 and g E GL'(3, R). These functions span the irreducible represen- 
tation of the group CM(3) obtained by Weaver et a1 (1976). The functions f in (4.25), 
the collective energy spectrum, the electric quadrupole transition rates, etc are then 
calculated from the eigenvalue problem for the collective Hamiltonian Hc0ll = 
Tcoll+ Vcoll. The collective potential Vcoll can be chosen a polynomial in the three 
well-known R6 0 SO(3) invariants 1"' Tr Q = 11 + 1 2  + 4, = Tr Q2 = 
$(I: + 12 + 1: ) and = f Tr Q3 = !(I? + 1: +I: ) (Kumar and Baranger 1967, Noack 
1968, Eisenberg and Greiner 1970a, p45,  Ui 1970, Spencer 1971, Chac6n and 
Moshinsky 1977). However, because of the complexity of the differential operators 
(4.24), calculations for only simple cases have so far been carried out (Zickendraht 
1971, Filippov 1974, Filippov and Maksimenko 1975, Gulshani and Volkov 1981). 
Hcoll may also be diagonalised in some approximation using ( 4 . 1 7 ~ )  and the expansion 
(4.13) for 0-* (cf Gulshani and Volkov 1981) within an irreducible representation of 
the symplectic group Sp(6, R) (Asherova et a1 1976) based on Elliot's SU(3) harmonic 
oscillator basis (Elliot 1958, Harvey 1968). This latter recourse has the desirable 
feature of being microscopic, i.e. relates the collective eigenstates to those of the 
independent particles. Perhaps a more appropriate basis for the diagonalisation of Hcoll 
is provided by an irreducible representation of the direct-product group SU(6) x SO(3). 
Here the group SU(6) describes the boson part of Hall obtained by expressing Tcoll in 
( 4 . 1 7 ~ )  in terms of the momentum canonically conjugate to Q given by one of the 
authors (Gulshani 1978). This description makes a direct contact with and may in-fact 
generalise the highly successful nuclear Interacting Boson Model (Arima and Iachello 
1975, 1976, 1978, Iachello 1979) as will be shown in a subsequent paper. 

4.3. Intrinsic momenta and kinetic energy 

For a unified and consistent formulation of the problem of the intrinsic and the CM(3) 
collective motion given in §§ 4.1 and 4.2 it is now necessary to obtain a set of (3N - 9) 
basis vectors for the normal space (TJdGL)I in (4.8) in terms of a set of vectors { J }  on the 
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Grassman manifold of 3-planes G(3, N )  = Aintr in (4.5). The aim is then to express p? 
in ( 4 . 1 5 ~ )  and Ti,,,, in (4.176) in terms of (3N-9) intrinsic vector fields onAintr. With 
some caution to avoid pitfalls this can be accomplished rather simply as we now show. 

From the rule (2.10) and the diffeomorphism between G(3, N )  and SO(N)\(S0(3) x 
SO(N - 3)) given in 0 4.1 (cf (4.5)) one readily finds that the vector fields { J }  on JCCinlr are 
given by 

J = X n i - - X m i -  a a 
ax mi axni  ' nm - (4.26) 

It ought to be emphasised that Jnm are not defined on the SO(N) manifold. But they are 
defined on SO(N)\SO(N - 3). This latter circumstance arises from the fact that SO(N) 
acts transitively on the set of all oriented orthonormal 3-frames S(3, N) in (4.2) with the 
isotropy subgroup SO(N - 3). Indeed, from an analysis similar to that given for G(3, N) 
in 0 (4.1) one can show that S(3, N )  is a manifold of dimension (3N-6) diffeomorphic 
to the quotient manifold SO(N)\SO(N-3) of right cosets. S(3, N) is known as the 
Stiefel manifold of 3-frames (Auslander and MacKenzie 1963, p 175, Brickell and 
Clark 1970, pp92, 253, Warner 1971, p 129)t. Furthermore, we see that G(3,N) 
arises from defining the following equivalence relation on S(3, N): x - y if y = x r for 
r E SO(3) and x, y E S(3, N )  (see also appendix 2). 

Now the vector fields J n m  in (4.26) on J?intr are not orthogonal to the vector fields tii 
in (4.9) on AGL because the inner product g(tii, Jnm) = xmixni  - x n i x m i  does not vanish 
for i # j .  Therefore, Aintr = G(3, N )  is not an integral manifold of the distribution 
determined by (T'.GL)', i.e. (T'.GL)' f T'int,. If one were to require that 
(T'.GL)' = T,G(3, N) as was done previously (Gulshani and Rowe 1976), one would 
arrive at the conclusion that every coordinate system on G(3, N) is non-integrable on 
083N as is shown in appendix 3. However, we can use the gl(3,R) projector A in (4.16) to 
project Jnm onto the normal space ( T A G L ) ' .  Thus the vector fields 

Jnm E A n d m m  (4.27) 

- 0 for all i, j ,  n and m 

r nm X m i  = X n i  Anmx mi = 0 for all n and j .  (4.28) 

The result in (4.28) follows readily from the definitions (4.7), (4.146) and (4.16). The 
operators (4.27) are then vector fields along but not on (tangent to) &ntr = G(3, N). 

By means of a simple algebraic manipulation one can now express p r  in ( 4 . 1 5 ~ )  
and Tin,, in (4.176) in terms of the intrinsic vector fields (4.27). Substituting the identity 

rizi mj - are in   TAG^)^ since the scalar product g(tij, jnm) = AnAx x 
by virtue of the relations 

(d (4.7)) 
Pmi =MQii'xnicxn,Pml 

into py and using (4.28) one can easily show that 
intr - pni = A n d m i  = -ih&Qg':k'/2.fkn 

where 
J k n  E 2 k J n m  

(4.29) 

(4.30) 

t Evidently S(k, N) for any integer k c N  is a generalisation of the unit sphere. In particular the unit 
N-sphere in is SN-' = S(1, N )  (cf Vilenkin 1968) and the unit 2-sphere in R3 is Sz = S(1,3). A natural 
coordinate chart on S(3, N )  is then given by generalised spherical coordinates (cf Vilenkin 1968, Dzyublik et 
a[ 1972, Ovcharenko 1976). 
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and 

Rin = &QG1”xnk (4.31) 

where jnm is as in (4.27). Q-l” in (4.29) and (4.31) is the inverse of Q1/* defined in 
terms of the principal moments IA in (4.18) by 

1/2 Qi1/2 E r,4ir,4j(IA)-1”. (4.32) 1/2 - 
Q i j  = rAirAj(IA) 

One now uses the commutation relations 

[Jnm, x n‘i]  = (Sm,ix ni - m i )  

and, hence, 

(4.33) 

CJnm, QijJ= 0 for all n, m, i a n d j  (4.34) 

to obtain 

(4.35) 1 intr 2 1 2‘ T. ,“tr =- - 2M ( p n i  ) = -?A JinQiil-k 

Transforming (4.35) to the quadrupole principal axes in (4.18) and using the com- 
mutators (cf (4.34) and (4.18)) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

- 
(4.40) 

Equation (4.40) follows directly from (4.32), (4.31) and (4.19). 
Geometrically RAn in (4.40) is a point of S(3, N ) ,  the Stiefel manifold of orthonor- 

mal 3-frames (cf (4.43) below). From the diffeomorphism S(3, N )  = SO(N)\SO(N-3) 
established above it follows that RAm are three rows of an ( N  x N )  orthogonal matrix 
l? E SO(N)\SO(N - 3). Furthermore, l ? ~ ~  effects the transformation from the axes in 
RN labelled by (n, m, . . .) to the three principal axes (A, B, C) of the projection matrix r 
in (4.146). This is seen from the definition of r, which can be rewritten in the form 

(4.41) 

and from the fact that r can be brought, up to an ordering of the eigenvalues, to the 
diagonal form 

1 / 2  nA R A ~  E rAiRim ( k f / I A )  X . - 

- - -  
rnm = &,Rim = R A , , R A ~  

(4.42) 

for some l? E SO(N)\SO(N - 3) with SO(N - 3) being the isotropy subgroup of SO(N) 
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at To?. As expected one can easily verify the following properties (cf (4.19), (4.331, 
(4.34), (4.36) and (4.40)): 

RAnRBn = SAB (4.43) 

rnm&m = RAn (4.44) 

[Jnm, I?Afi] = SmfiI? - S n f i I ? ~ m .  (4.45) 

- 

Now using equations (4.16) and (4.43)-(4.45) and the properties 

rnmAmz = A,,,R~, = o (4.46) 

(cf (4.28)), we can simplify the expression (4.37) for Ti,,, and obtain 

where 

JAB E R A n R B d n m .  

(4.47) 

(4.48) 

The expression (4.47) for T,,, is, however, not in a convenient form because the 
operators JA,, are components of J,, along two different sets of axes: the axes (n,  m )  in 
RN and the three axes (A,  B, C) of the N principal axes of r. Clearly one can remedy 
this situation by using the remaining (N-3) rows I?,,,(4s v s N )  of the matrix 
I? E SO(N)\SO(N - 3) of which EA,, in (4.40) is the first three rows. But one must now 
exercise some caution. The rows I?,,, have the obvious definition (cf (4.46), (4.431, 
(4.41) and (4.16))$ 

I ? A V I ? ~ ~  = 0 ~ , , ~ , f l  = S,, 4 s p ,  v c N  (4.49) 
- -  

Anm = S,,, - I?A,,I?A, = R,,,R,,. (4.50) 

Equations (4.49) and (4.50) do not determine I?,,, uniquely. Thus, unlike EA,, in (4.40), 
I?,, are not uniquely defined functions of the coordinates x n i  on R”. However, the real 
difficulty in using I?,, in (4.47) is that, for any arbitrarily constructed I?,, satisfying 
(4.49) and (4.50), I?,,, do not have simple transformation properties under the action of 
J,,, in (4.26). For example, it has been shown (Gulshani 1981, appendix 1) that 

[Jnm, a u r i  I f; S m f i E v n  - S n f i R u m  (4.51) 

in contrast to the transformation properties of Ran in (4.45). Related to the inequality 
(4.5 1) is the nullity, Jpy  = I?rnI?YmJnm 0, of the components of Jnm along (N - 3) of the 
N principal axes of r (cf (4.26), (4.28) and (4.50)). This is simply a generalisation of the 
situation in R3 where the component of the angular momentum along the radius vector 
vanishes. 

Recalling the distinction between the angular momentum of a single particle and 
that of a rigid body in R35, we now introduce in juxtaposition with J,, the infinitesimal 
operators K,, of SO(N). One can now show (Ovcharenko 1976, and cf SO(3) cases) 
that the operators J,,, and K,,, become identical when acting on functions T defined on 

i. The set of all matrices {r} is seen to be diffeomorphic to SO(N)\SO(N-3). 
t: 8,” are seen to be the ( N  - 3) eigenvectors of r and A with eigenvalues zero and unity respectively. 
5 The former momentum is defined on S0(3) /S0(2)  whereas the latter is defined on SO(3) (see Gulshani 
1979 and references therein). 
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SO(N)\,SO(N --3!,  i.e. 
JnmY(R) = K n m 9 ( R )  R E SO(N)\SO(N - 3). (4.52) 

It can also be shown that, for any I?,,, E SO(N)1-, - - - 
[ K n m ,  R u g ]  SmiiRun - 6 n ~ R u m  (4.53) 

fcf (4.51)). From (4.52) and (4.45) we also have 
- (4.54) 

We can now restrict the action of the operator Tint* in (4.47) to functions defined on 
SO(N)\SO(N - 3) and use equations (4.52) and (4.53) to simplify Tin,,. Using the suffix 
cr to range over both suffixes A and v, one then obtains 

- 
[ K n m ,  RAIi]= SmSRAn - S n ~ i R m .  

where KAu and K A B  are r principal-axis components of Knm defined by 

K A ~  L R d v m K n m  K A B  E R A n R B m K n m .  (4.56) 

To obtain the second line in (4.55) we have used (4.53). Substituting (4.55) into (4.47), 
one then readily obtains 

N - 3  3 1 
7'intr'P(E)= -$h2 1 - K;,W(R) R E SO(N)\SO(N - 3). (4.57) 

"=I A=I IA 

It is observed that Tiatr in (4.57) is equally well defined on the (3N-9)-dimensional 
Grassman manifold SO(N)\(S0(3) X SO(N - 3)). Furthermore, it is seen that only 
(3N-9) intrinsic vector fields KAv appear in (4.57) as desired$. Using (4.19) and the 
definition of RA, in (4.40), one can also express the GL"(3, R) infinitesimal operators 
TA in ( 4 . 2 1 ~ )  in terms of Jn, in (4.26). One obtains 

Z C  = RAnRBmJnm A, B, C in cyclic order. (4.58) 

This relation can be understood in terms of the geometrical connection between the 
Grassman and the Stiefel manifolds mentioned before (see also appendix 2). 

Combining (4.17a), (4.241, and (4.57) and (4.58), we finally obtain, for the total 
kinetic energy, the expression 

i. Because 8," in (4.49) and (4.50) is not uniquely defined, we may choose to define it either on SO(N) or 
SO(N)\SO(N-3). But to satisfy (4.53) R,, must be defined on SO(N) (cf (4.52) and (4.51)). 
f It is seen io be a consequence of (4.51) that the operators K i v  in (4.57) cannot be repiaced by J i " ,  where 
JA" RA,R,,J,,, in spite of the equality in (4.52) as was pointed out previously (Gulshani 1981). 
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where Z? E SO(N)\SO(N - 3). Expression (4.59) has been given before (Gulshani 
1981) and is identical tot that derived by Dzyublik et a1 (1972), Filippov (1974), 
Ovcharenko (1976) and Vanagas (1977) who used the chain-rule method and a 
different decomposition of R3N and T,&fN (see appendix 2). T in (4.59) is also similar 
to that given by Buck etal(l979) (see appendix 3). One of the merits of the expression 
(4.59) is the simple features of Tin* made possible by the introduction of the mathema- 
tically tractable SO(N) and its quotient manifolds. In this way one has obviated the 
difficulties encountered previously in the elimination of redundant coordinates (Lipkin 
et a1 1955, Lipkin 1958a,b, 1960, Scheid and Greiner 1968, Eisenberg and Greiner 
1970b, Villars and Cooper 1970, de Shalit and Feshbach 1974, Herold and Ruder 
1979, Herold 1979). 

The decomposition of R3N in (4.5) and T in (4.59) into a collective part defined on 
GL'(3, R) (respectively GL'(3, R)/S0(3), see (4.58) and appendix 2) and an intrinsic 
part on SO(N)\(S0(3) x SO(N - 3)) (respectively SO(N)\SO(N - 3)) induces a cor- 
responding decomposition of the N-particle Hilbert into irreducible subspaces defined 
on these manifolds. A complete set of functions for the intrinsic subspace is given by an 
irreducible unitary representation 9; of SO(N) restricted to subsets invariant under 
SO(3) x SO(N - 3) (respectively SO(N - 3)) and reduced with respect to the various 
SO(N) subgroup chainS. Together with functions (4.25) on GL+(3, R) (respectively 
GL'(3, R)/S0(3))$ a complete set of functions for the N-particle Hilbert space is given 
by 

q z & f A t i  fk&(lA)[gdlt;K(r)g%X(F) + (-1) ~ M - K ( ~ ) ~ % - , ( Y ) I G '  (RI  

with R E SO(N)\(SO(N - 3)) or respectively by 

L + P + K + X  L 

(4.60) 

L + P + K + X  L 
*E%xAti= & i & ( ~ A ) [ @ i i K ( r ~ ~ ~ & G )  + (-1) g M - K ( r ) g s - X ( R ) ]  (4.61) 

with Z? E SO(N)\SO(N - 3). The reduction of the N-particle Hilbert with respect to the 
group SO(N) allows one to take the Pauli principle and hence particle statistics fully 
into account. This circumstance arises from the well-known fact that the symmetric 
group S N  is a subgroup of O(N) .  Thus one is now enabled to construct from (4.60) or 
(4.61) orbital wavefunctions of the proper permutation symmetry and combine these 
with the spin-isospin functions of contragradient symmetry to obtain the total wave- 
function. Detailed study of the relevant classification of the N-particle wavefunctions 
with respect to the unitary and symplectic groups and their subgroup chains including 
O ( N )  and S N  have been given by a number of authors (Vanagas and Kalinauskas 1974, 
Perkauskas et a1 1975, Petrauskas and Sabalyauskas 1975, Asherova et a1 1976, 
Vanagas 1976, 1977). Calculations for only light nuclei have so far been reported 
(Filippov and Maksimenko 1975, Filippov et a1 1978, 1979). 

Appendix 1. Vector fields for the normal space (TAGI& 

From the r tangent vectors (X& in (2.10) spanning the r-dimensional subspace T&G/H 
of T,R3N, one can easily construct a set of (3N - r) basis vectors (Z,) ,  for (T&c,H)'. 
f A minor difference arises from the centre-of-mass motion which we have ignored here. However, this is 
easily taken into account (cf Gulshani and Rowe 1976). 
$ These functions generalise the usual spherical harmonics on S 0 ( 3 ) / S 0 ( 2 )  (see, for example, Vilenkin 1968, 
Strichartz 1975). 
5 As was pointed out in 53.2 and will be shown in a subsequent work, more convenient collective basis 
functions are provided by an irreducible representation of the boson SU(6) group. 
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The result for r = 3N - 1, i.e. when is a hypersurface in R3N, is well known (Synge 
and Schild 1961, Lovelock and Rund 1975). A generalisation of this result is immedi- 
ate. Denote the components of 2, by 2;' and the pair indices ni by (T. Then 

3N 

2: = c &,, , , . , , , ,X~'Xp.  . . x> (A. 1.1) 
k = l  

where the permutation symbol E is defined by E , - , ~ ~ ~ . . . ~ ~  = (0 if any two suffices are equal; 
*1 if the set ([TI, uz, . . . , uk) is a selection from an even/odd permutation of the 3N 
integers (1,2, . . . , N)). From (Al.l)  it is evident that the vector field Z1 = 2;' a/ax"' is 
orthogonal to X,, i.e. g(Z1, X,) = 0 for all a. From Z1 and X,  we can now similarly 
construct Z2 orthogonal to Z1 and X,, and so on. Thus we obtain (3N - r )  vector fields 
2, with components 

Xp. (A1.2) 

for Y a 2  where 2: is given in (Al . l )  

Appendix 2. G = GL+(3, R)\S0(3) and G = SO(3) 

To obtain the result (4.59) one may also identify the collective submanifold of R3N with 
the orbits of the left cosets GL+(3, rW)\S0(3) as was done by Zickendraht (1971), 
Morinigo (1972), Dzyublik et a1 (1972), Filippov (1974), Ovcharenko (1976) and 
Vanagas (1977). In this case the intrinsic submanifold A,,,, in R3N =JUGL/SO x A,,,, is 
identified with the Stiefel manifold S(3, N) of oriented orthonormal 3-frames in RN 
defined in 3 4.3. SO(3) is then the isotropy subgroup of the action of GL'(3, R) on 
S(3, N) (cf (4.1) and (4.5)) because it maps one orthonormal 3-frame into another. 
From the diffeomorphism S(3, N) = SO(N)\SO(N - 3) given in 8 4.3 one then has the 
decomposition (cf (4.5)) x"' = with g E GL'(3, R)/S0(3) and R E 
SO(N)\SO(N - 3). But from (4.20) a representative coset in GLC(3, R)/S0(3) is given 
by g , A  = rAlsA. Therefore the above decomposition of R~~ is given by 

X"' = rAIS*EAn r E SO(3) SA = ( I~ /M)"~.  (A2.1) 

In the corresponding decomposition TxR3N = T#GL/SO 0 ( T#GL/so)' Dzyublik et a1 
(1972), Filippov (1974), Ovcharenko (1976) and Vanagas (1977) made the 
identification ( T'GL/SO)C = TxS(3, N) and obtained the result (4.59). 

It is then interesting to apply the projection method to (A2.1). For this we have to 
make the choice (T&GL/SO)C = (TJtGL/SO)L and construct, from the general formula 
(3.4) and the vector fields L A  and t A  on ~ 2 ~ ~ 1 ~ 0  given in ( 4 . 2 1 ~ )  and (4.21b), the 
projector r: 7'xR3N -+ With respect to the basis {a/ax"'}for TxR3N weobtain 

r n r , m l  r:?ml+ r 2 m l  ( A 2 . 2 ~ )  

where 

r;:ml = Mx;'9  ;;x ? I .  (A2.2b) mA nA rE%f (M/IA)rAirA,x x 

In (A2.26) 9-I is the inverse of the rigid-body tensor 4 defined by 

9 k i  E Mx;'Xi'  = &(Tr Q) - Qlk X;l = &klrX"! (A2.3) 
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Q in (A2.3) is the mass quadrupole tensor in (4.7). Other quantities in (A2.2b) are 
given in (4.18) and (4.19). It is easy to show that r in (A2.2a) is a (3N x 3N) symmetric 
and, since rrig - rvib = 0, idempotent. Furthermore, rank r = 6 = dim (TAGLlSO). 

From (3.10) the decomposition of the particle momenta is then given by 

pni + p y  ( A 2 . 4 ~ )  
a p ,3 -i)l- = COll 

ax 

pi?,‘ nl = A  nrmi . p mi . 

n1 

where 

(A2.4 b ) call - 
P n i  = r n i , m j p m j  =p:: -tP;” 

with 

L . m j  E Snmaij - r n i , m j  p:? E - i t i E i j k X n i $ i f L ,  ( A 2 . 4 ~ )  

and 

(A2.4d) 

The corresponding decomposition of the total kinetic energy is then given by (cf (3.13)) 

where 

( A 2 . 5 ~ )  

(A2.5 b) 

with 

and 

In deriving (A2.5d) we have used the result 

which can be derived from a previous result (Gulshani and Rowe 1976, equation 
(2.18)). 

We observe that Tvib in (A2.5d) is identical to that in (4.246). But the rotational 
kinetic energy Trig in ( A 2 . 5 ~ )  is that of the rigid body and clearly differs from Trot in 
(4 .24~) .  In fact, Trot is expressible as the sum of Trig and other terms involving both LA 
and ZA (Gulshani and Rowe 1976). These latter terms must, therefore, be included in 
Ti,,,, in (A2.5b). Thus an appropriate set of intrinsic vector fields may now be seen to be 
some vector fields on SO(3N) 3 SO(3) x SO(N) so as to involve both LA and Jnm in 
(4.26). We have not yet been able to express Tin,, in terms of such vector fields and 
obtain the result (4.59) and thereby establish the equivalence of the approach in this 
appendix and that of 8 4. Similar difficulty is encountered when we consider the 
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rotational motion. For this motion the collective submanifold of R3N is identified with 
the orbits of SO(3). The corresponding projector and the decompositions of the 
momenta and the kinetic energy are easily discernible in equations (A2.2), (A2.4) and 
iA2.5) (cf Gulshani 1981). 

Appendix 3. The source of non-integrability 

We have seen in 8 4.3 that the Grassman manifold of 3-frames G(3, N )  is not an integral 
manifold of the distribution determined by the normal space (TAGL)', i.e. (TA&)' f 
TxG(3, N ) .  Here we show that if we require (TAGL)- = TxG(3, N )  as was done before 
(Gulshani and Rowe 1976), then every coordinate system on G(3, N )  is non-integrable 
on I W 3 N .  Let {go}  and {E"ll s cr G 3 N  -9) be a system of coordinates on GL'(3, R) and 
G(3,  N )  respectively. Then equation (4.5) becomes 

' -= RmR,,, (e" ) (A3.1) 

Clearly the infinitesimal operators t,, of GL'(3,R) do not act on R,, E 

SO(N)\(S0(3)  x SOW - 3)). It then follows that, in the chain-rule expansion 

(A3.2) 

and hence 

we must have 

,y'I'df'/&y'I' = (, for all i ,  j and U.  iA3.3) 

Now we can relate a f r / a . x " '  to &x"'/d(" by using the intrinsic metric as follows (Gulshani 
and Rowe 1976, appendices I and 111): in terms of an arbitrary complete set of 
coordinates { T I '  ~ 1 s z t s3N]  on R3N the metric g on R3N is defined by the arc length 

Since { v '  ] IS a complete set we have 

r i \ '  r/q 
- &ln74, 

Rq' d t "  

and therefore 

(A3.4) 

Now the requirement that T J ~ G L  be orthogonal to TxG(3, N ) ,  i.e. ( T&GL)- = 

T,G(3, N ) ,  implies that the metric g be block diagonal in terms of the coordinates 
{R,,, tff}, i.e 
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(Gulshani and Rowe 1976, appendix 111). It then follows from equation (A3.4) that 

a t "  axni 
""ax n' at" * 

g --=- ( A 3 3  

Multiplying (A3.3) by gsm summing over (+ and using (A3.3, we obtain the constraint 
equations 

Equation (A3.6) is made up of two parts: a symmetric part 

and a skew symmetric part 

(A3.6) 

(A3.7) 

(A3.8) 

Constraint equations (A3.7) and (A3.8) are separately integrable. (A3.7) is clearly 
integrable by virtue of (4.5) and (4.7) and, contrary to the assumption made by Rowe 
(1970), (A3.8) has a solution given by 

ax "'/at" = cZx ni 

with C z  being arbitrary functions of x n i .  However, (A3.7) and (A3.8) are not 
compatible constraints with the result that (A3.6) are not integrable as we now show. 

Differentiating (A3.8) with respect to x mk, we obtain 

To show that the last two terms in (A3.9) cancel each other consider 

(A3.9) 

(A3.10) 

where we have used (A3.2) and (4.5). Now the last term in (A3.10) vanishes by virtue of 
(A3.6). Assuming that xni  are differentiable functions of 6" so that we can interchange 
the order of differentiation with respect to 5" and 6" in the first term on the right-hand 
side of equation (A3.10), we obtain, with repeated use of (A3.6), 

a t w  a 2 X n i  - p p  - a2x ni - a t "  a 2 X n i  - p i -  -- 
axmkat" axmk ag'ag" axmk ag"ag" X ni 

(A3.11) 

where the chain rule (A3.2) is used again to obtain the last equality in (A3.11). From 
equations (A3.11) and (A3.9) we then obtain the result 
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which implies that 

i)Xml/a€rr = 0 for all m, j and v. (A3.12) 

Conditions (A3.12) imply that X" must be independent of 5" (i.e. frozen intrinsic 
structure) for the constraint equations (A3.6) to be integrable. Otherwise the assump- 
tion of differentiability of x n i  with respect to tu used in (A3.11) is false and we have the 
non-integrability condition: 

(A3.13) 
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