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Geometry of collective motions
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Department of Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Received 26 February 1981, in final form 15 June 1981

Abstract. A general projection method for decomposing the kinetic energy of an N-particle
system into collective and intrinsic parts defined respectively on the orbits and the orbit
space of a Lie transformation group is given. Specific targets of the application of the
method are the kinematical group GL*(3, R) and the quotient set GL*(3, R)/SO(3) for their
importance in microscopic formulation of nuclear collective motions. For these two cases
the orbit spaces in the particle configuration space are shown to be identifiable with the
Grassman and Stiefel manifolds of 3-planes and 3-frames respectively. Some problems
related to expressing the kinetic energy in terms of vector fields on these manifolds are
resolved. In particular, non-integrable coordinates previously used by one of the present
authors is shown to arise from the imposition of unacceptable conditions. Finally we
consider the corresponding decomposition of the N-particle Hilbert space. It is proposed
that an appropriate basis function for the GL*(3, R) collective model is provided by an
irreducible representation of the boson SU(6) group.

1. Introduction

The phenomenological nuclear collective models of Bohr—-Mottelson (Bohr 1952, Bohr
and Mottelson 1953, 1975, Bohr et al 1976) have had considerable success in
accounting for various rotational and vibrational features in certain nuclei. In attempts
to formulate these models microscopically many authors have adopted a geometric
viewpoint. The objective in this approach is to extract the model Hamiltonian by usinga
Lie transformation group to effect a change of coordinates on the N-particle configura-
tion space R*" from the particle to a set of collective and intrinsic coordinates. The
resulting decomposition of the total particle kinetic energy into collective and intrinsic
parts then defines the model kinetic energy. The collective potential energy will then
have to be obtained from other considerations.

To describe the rotational motion Bohr (1954), Villars (1957), Scheid and Greiner
(1968), Villars and Cooper (1970) and Rowe (1970) used orbits of the kinematical
group SO(3) as the collective submanifold of R*~. This work was later generalised
independently by many authors to the simpler and physically more interesting case of
the coupled rotation-vibrational motion by using the groups GL"(3, R) (Cusson 1968,
Gulshani and Rowe 1976, Gulshani 1977, 1978, Buck et al 1979) and SL(3, R) (Ogura
1973, Weaver et al 1976) and the quotient set GL*(3, R)/SO(3) (Zickendraht 1971,
Dzyublik et al 1972, Morinigo 1972, 1974, Filippov 1974, Ovcharenko 1976, Vanagas
1977). Although the final results of these GL*(3, R) transformations are similar,
different authors have used different decompositions of R*" and different decom-
positions of the tangent space to R*M, i.e. the particle momentum space.
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48 P Gulshani and A B Volkov

Recently projection operators for the Lie algebras so(3) and g/(3, R) were given and
it was shown (Gulshani 1981) that these operators provide a simple and a transparent
means of effecting the decomposition of the particle momenta and the total kinetic
energy. The purpose of this paper is firstly to generalise this projection method to an
arbitrary Lie group using some elementary concepts in differential geometry; and
secondly to rederive the GL*(3, R) results in this general frameworkt and analyse
carefully the various problems raised in the previous paper. In § 2 we review briefly the
geometric method of constructing collective and intrinsic submanifolds of R*™ and
vector fields on them. These manifolds are identified respectively with the orbits and
the orbit space of a Lie transformation group modulo an isotropy subgroup H. The
decomposition of the tangent space to R*" into subspaces tangent and normal to the
collective submanifold using a projector operator is then carried out in §3. The
corresponding decomposition for the total particle kinetic energy is then obtained. In
this section we also discuss various other possible decompositions.

In § 4 these results are specialised to GL*(3, R)/H. In § 4.1 it is shown that, with
H = ¢, the identity element in GL"(3, R) and H=SO(3), the intrinsic submanifold of
R*" is identifiable respectively with the Grassman manifold of 3-planes and the Stiefel
manifold of 3-frames in R™. In §4.2 the gl/(3, R) projector is constructed and the
decompositions of the particle momenta and the total kinetic energy into collective and
intrinsic parts with respect to the different sets of collective coordinates are derived.
Different sets of basis functions for the diagonalisation of the collective Hamiltonian are
discussed. In particular it is suggested that irreducible representations of SU(6),
employed in the interacting boson model of Arima and lachello, provide suitable basis
functions for the GL"(3, R) collective model considered here. Finally in § 4.3 we use
diffeomorphisms between the Grassman and the Stiefel manifolds and quotient spaces
of SO(N) to express the intrinsic kinetic energy in terms of vector fields on SO(N).
Some problems related to doing this are resolved. In particular it is shown that
non-integrable coordinates used previously arise from imposing incompatible con-
straints.

2. Lie transformation groups and collective-intrinsic submanifolds of R*"

The configuration of a system of N discrete particles in the three-dimensional physical
space is given by a point in the 3N-dimensional Euclidean space R*", known as the
configuration space. R*" is a manifold as well as a vector space of dimension 3N. A
natural (global) coordinate system (atlas of charts) on R*" is commonly chosen to be the
rectangular Cartesian coordinates {x M. i=1,2,3; 1<n=<N}. The particle momenta
pni=—ih(d/8x") are (tangent) vector fields on R*™ and the set {3/0x™} span, at each
point x € B°", the 3N-dimensional tangent vector space T,R* to R*N. R*M is a flat
Riemannian manifold with the Riemannian metric g defined by the usual Euclidean
inner product (see, among others, Brickell and Clark 1970, p 161, Matsushima 1972,
p 40, Boothby 1975, p 184)

d d
ni,mj = T nisy T onl :5nm8i‘- 2.1
Brimi g(ax ox ) ! 2.1

+ Recently Guillemin and Sternberg (1980) have given the problem of collective motion a mathematical
exposition in the framework of the momentum map.
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The total kinetic energy of the system is then given by the Laplacian

3
=3 n; i; D 2.2)
where M is the mass of each particlet.

The attempt in the geometric approach to realising collective models microscopic-
ally is to seek an appropriate direct-product decomposition R*N = Mg X Min. of R*Y
into collective, #g, and intrinsic, .., submanifolds. The corresponding direct-sum
decomposition

T.R" = T Mc®(TMc) 2.3)
Pni =P+ (2.4)
(where T is the tangent space to /¢ spanned by some (collective) vector fields given
below and (T #)° is the vector space complement) then defines the decompositionof T
in (2.2) into collective and intrinsic parts. The expressions obtained for these separate
parts is observed to depend crucially on the choice of (T,.#g)°. This choice can be made
in a number of ways. For example, we may set (T #) = Tline in which case pii” are
vector fields on ;... In this paper we choose it to be the normal space to g, i.e. we set
(TM) = (TeMs)™ , the orthogonal complement of T in T, RN, In this case pi,{‘i" are
vector fields along M, but not necessarily on ., because, in general, (7.#g)" #
T Minie as we shall see in §4.3. This choice has the advantage that the resulting
orthogonality?

g(pi, pmiy=0, 2.5)

with g as in (2.1), simplifies the decomposition of the kinetic energy T in (2.2). For then
one readily obtains the result (see § 3)

T= Tooll + Tiner (26)

with no cross terms between the collective, Ty, and intrinsic, Ty, parts of 7. We shall
be working in the basis sets {x"™} and {3/6x™} for convenience and to ensure that all
functions and vector fields used are well defined on R*".

Now a natural way of realising collective, #g, and intrinsic, #is., submanifolds of
R*N is to identify them with the orbits and the orbit space respectively of a Lie group
which acts on R’ as a Lie transformation group§. Let us now briefly review some
aspects of the action of a Lie transformation group on a manifold such as R*"|.

A Lie group G acts on R*™ (on the left) as a Lie transformation group when one is
given a mapping

O:GXRV>RY,  x=d(g 5) (2.7)

T Note that (2.2) is equivalent to the so-called Laplace-Beltrami operator by virtue of the flatness of RN (cf
(2.1)) (see, for example, Hermann 1968, Gulshani and Rowe 1976, appendix I).

1 This orthogonality was first pointed out and used in this context by one of the present authors (Gulshani and
Rowe 1976, appendix III, Gulshani 1977).

§ This geometric approach is to be compared with the method of spectrum generating algebras (Dashen and
Gell-Mann 1965, Dothan ef al 1965, Ui 1970, Hermann 1972, Weaver and Biedenharn 1972, Weaver et al
1973, 1976, Gulshani and Rowe 1976) and of dynamical groups (Dyson 1966, Arima and Iachello 1975,
1976, 1978, Dzholos ef al 1976, lachello 1979).

| For more detail refer to, among others, Auslander and Mackenzie (1963), Tondeur (1969), Brickell and
Clark (1970), Warner (1971), Matsushima (1972), Sagle and Walde (1973) and Boothby (1975).
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for xeR*, geG and some xeR’™, such that, for g;,g.€G, ®(g1, P(gz, 7)) =
®(g122, ¥) and, for the identity element e G, d(e, ¥) =x. The set of points {x =
d(g, %)lx e RN, all g € G} is a subset of R*" called the orbit of  under the (left) action of
G. The action of G in (2.7) is said to be effective if the identity ¢ € G is the only element
for which ®(g, £) = . In general G does not act effectively and one may then find (at
each point ¥) a subgroup H of G for which £ is a fixed point, i.e. ®(h, ¥) = % forall 1 € H.
The subgroup H is called the stability or the isotropy subgroup of G at x. If His a closed
(Lie) group, then the set of all left cosets G/H={gH|ge G} is a C™ manifold of
dimension given by dim{G/H) = dim G —dim H. G/H is called the quotient manifold,
the coset or the factor spacet. Evidently G/H acts effectively on R*".

One can now prove the following theorem (Brickell and Clark 1970, p 250): Let G be
a Lie transformation group of R*" and H the isotropy closed subgroup at the point
7€ R*™. Then the C* injective mapping

¥z: G/H->R", (2.8)
defined by
x =iz (gH)=®(gH, %) = O(g, P(H, 7)) = P(g, X)

where @ is as in (2.7), is an imbedding of the quotient manifold G/H into R*". In other
words, each orbit M, = {x = ®(gH, %)|g € G} of % is a submanifold of R*" diffeomor-
phic to G/H. The diffeomorphism in (2.8) sets up an isomorphism between the tangent
spaces T.(G/H) and T,/ to G/H and the orbit /s,y at each pair points ¢ = gH and
x = ¢;(gH). The imbedding, on the other hand, ensures that T,/ is a subspace of
T.R*™. The correspondence between vector fields on G/H and M is given by the
injective mapping (the differential of ;)

¢%: To(G/H) > TMa/m (2.9)

where 0=¢H = H is the identity element in G/H. ¢¥ in (2.9) is defined as follows: for
every tangent vector Y€ To(G/H) and any C™ real-valued function f on G/H we have
Y3 (Yo) e Tl and ¥ (Yo)(f) = Yol foys:). More specifically, let » be the dimension
of G/H and (y',...,y") a set of coordinate functions on G/H so that the r tangent
vectors {(8/8y*)oll <@ <r} span To(G/H). Then the tangent vectors (X, ), € T M,
corresponding to (8/dy*)o and expanded in the basis vectors {(3/9x™),} of T.R*", are
given byt

). =v(57%) = [aj " ounle)] (50m).

sxg‘(x)(—f’-,;) l<a<r (2.10)
ax "/
where the expression in the square bracket is to be evaluated at the identity element 0
after the indicated differentiation. The set of tangent vectors {(X,).|1 < a <7} clearly
spans T, as ¢ is an injection.

Finally, we observe that T,.#g,u and the quotient vector space s/ oy, where g
and oy are respectively the Lie algebras of G and H, are isomorphic. This follows
immediately from the natural isomorphism that exists between /oy and To(G/H)

* G/H is a homogeneous space of G since G acts transitively on G/H. A transitive action is one for which any
two elements of the set can be connected by some element of G.
+ Summation over repeated indices is assumed throughout.
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(Matsushima 1972, p 236)1. These isomorphisms arise in a simple way. The Lie
algebra o of G is defined as the set of all left-invariant vector fields on G which are
determined uniquely by their values at ¢ € G by left translations (Brickell and Clark
1970, p 218, Matsushima 1972, p 188, Boothby 1975, pp 119, 154). One thereby
arrives at the isomorphism between &g and 7,G. On the other hand, when the
isotropy subgroup H is the identity e € G, one can show (Brickell and Clark 1970, pp
244, 248, Matsushima 1972, p 236) that the set of vector fields X, in (2.10) induced on
M form a Lie algebra & isomorphic to the Lie algebra of right-invariant vector fields
on G. Again these right-invariant vector fields are determined uniquely by their values
at e € G by right translations. The basis vectors of & and # are often called the
infinitesimal generators and operators of G respectively. When H# e, the above
isomorphisms still exist but the left- and right-invariant vector fields on G/H do not
because G/H is not a group unless H is a normal (invariant) subgroup.

We now define a collective submanifold of R*" to be the orbits /g1 of G/H. The
collective coordinates and vector fields are then given respectively by a set of appro-
priate coordinate functions {y*|1 <a <r} on G/H and the corresponding vector fields
X, in (2.10) on #g,u. The intrinsic submanifold #;n.;, which complements # /4 in the
direct-product decomposition R*™ = #g/u X Minys, is then naturally identified with a
quotient space of R*" as follows. The action of G defines an equivalence relation on
R*N: each x in (2.7) is equivalent to # and, hence, £ determines an equivalence class.
Thus an orbit of G is an equivalence class. The set of all equivalence classes of G in RN
is a quotient space called the orbit space of G and denoted by R*™/G (Brickell and Clark
1970, pp 91, 97, Boothby 1975, pp 60, 93). M, is, therefore, naturally identifiable
with the orbit space R*™/G of G. Thus, if {¢°|1 <o <3N —r} is an appropriate set of
(intrinsic) coordinates on ;.. = R*"/G, each orbit (2.7) of G may be parametrised
according to

x =D(g(y"), £(£%)), §€G/H, x € Min:. (2.11)

The intrinsic vector fields are then given by vector fields on My,

3. Decomposition of momenta and kinetic energy

We now seek a decomposition of the particle momenta p,; and the total kinetic energy T
in (2.2) into collective and intrinsic parts and expressed in terms of the r collective
vector fields X, in (2.10) on g, and some convenient set of intrinsic vector fields on
Min:. As was explained in § 2, it is convenient, for this purpose, to choose the
direct-sum decomposition$

TR = TMomu® (Tellom)* 3.1)

where (T M) is the (3N —r)-dimensional orthogonal vector space complement of
TMomin T, R®M, i.e. the normal space to #g,u. According to the procedure given
previously (Gulshani 1981) the decomposition (3.1) is accomplished simply in terms of

+ From a general theorem on vector spaces (Hoffman and Kunze 1961, p 323) one knows that the quotient
space /oy is isomorphic to any subspace complement of #y in A, i.e. ¥ =AuD(do/dn) (see also
Sagle and Walde 1973, p 151).

} Observe that, in general, (T, ,‘.,{{Gm)l # Tolines, i.€. Mins: is nOt an integral manifold of the distribution
determined by the normal space (T, ,J{Gm)l (cf §4.3).
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the projection operator I' on T, Mg/
I TR » Tl /n (3.2)

as follows. Since .# g, is a submanifold of R*", the Riemannian metric g on R*Y in(2.1)
induces a metric A on fg,; defined by

hap =g (Xa, Xp) = X;ixz‘igni,mi = X:tngi Isa,B=r (3.3)

where X7 are defined in (2.10). If the metric tensor /4 is non-degenerate, the matrix
representation of the projection operator I in (3.2) with respect to the basis {3/9x™} for
T.R*N is then readily constructed (cf Hoffman and Kunze 1961, p 232, Gulshani 1981).
One obtains

Tty = X o h X lsa,B=r (3.4)
where the inverse metric tensor 41°® is defined by h*"h,; = 3. From the definition (3.4)

it is easy to show that I’ meets all the requirements of the projector (3.2): I is symmetric,
i.e. I'pim =i, and idempotent, i.e.

1-‘311',mj = rni,ﬁkrf:k,mj = 1—‘ni,mi (3.5)
and A '
I‘m',meZ” =er;1 (3.6)
I" effects the projection in (3.2) according to
0 0 i
F(_)E ni,mj mi Zl 8 ‘
Py | oy P X h"Xg (3.7

where definitions (2.10) and (3.4) have been used. When evaluated at point x, the
right-hand side of (3.7) is clearly a vector in T.#g,;1. Defining the actionof I'on X, in
{2.10) by

rx)=xuT(-5) (3.8)
ox
we observe from (3.7) that (cf (3.6))

[(X,) = X.. (3.9)

This shows that I" acts in T#c,u as a unit operator. Since I' is idempotent, rank
I'=TrT=%,Thinu=2q=1 1 =r=dim Mg/u=dim(TMc/m). Thus the mapping in
(3.2) is onto.

The decomposition (3.1) is then given simply by:

, d
Pni =—ih a““*x 77 = U nimiPmi + A niymiPom

= —ihX N h "X + A i D l<sa,B<r (3.10)

coll intr

Epm’ +pni

T This property is evidently important since otherwise I' is only left or right idempotent. The order of
multiplication then becomes a problem. An example of this situation arises in the construction of a projection
operator for linear irrotational flow.

+ Note that combinations of different projectors (see, for example, Pease 1965) may be used to effect a
simultaneous decomposition of the space into different collective subspaces, as for example, into centre-of-
mass and other collective spaces (cf appendix 2).
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where (3.7) has been used and
Am mj= 6nm8u 1-‘Im mje (3 1 1)

Clearly (T #g/u)" is the null space of T and A projects T,R*" onto (T, #e/u)" along
T Mcm. From the relation

T rimicAme,mj=0 (3.12)

(cf (3.5)) it follows that equation (3.10) gives the decomposition of the particle momenta

coll

Pni into mutually orthogonal collective, p,;, and intrinsic, pm , parts, i.e.
g(pe", pin*)y=0. The second line in (3.10) gives the expression for p$3" in terms of the
collective vector fields X,.

In squaring (3.10) to obtain the corresponding decomposition of the total particle
kinetic energy (2.2) into collectxve and intrinsic parts, it is important to note that I',;
are C™ real-valued functions on R*~. Thus I'and 8/dx™ and hence p%" and pin* do not

commute. However, a simple rearrangement of terms, using commutators, yields

1 .
Z pru pmrm‘,mjpm] 2M pmAm‘,mjpmj = coll+ 7‘intr- (313)
We may now use (3.7) to express the collective kinetic energy Teoy in terms of the
collective vector fields X,

1
Teou=

—pn., aB
M Dhni X h XB

W
1-‘m',m]pmi = - (

M ;i)haBXp 1<a,Bsr
(3.14)

In connection with the definitions of T.on and Tin. in (3.13) it is observed from (3.10)
that

n
M

1
coll intr__coll
coll"2M Z( 2M§pm Pni

and
Z (pmtr _1_ z pcqllpin.tr
mtr 2M p ni nt ¢
Thus, in general,

1 cO ln I
Tcoll # o M % (P h? and mtr Z ( !

as might be expected from the decomposition (3.10) because, in general,
Z psgllplnnltr # O#Zplnr:"pfz?“

in spite of the orthogonality g(p%;', pim) =0 (cf § 4.2 and appendix 2).

Let us now consider Ty, in {3.13). In spite of the absence of any apparent coupling
terms in (3.13), one expects T,y and Ty, to be somehow coupled. To reveal this
coupling and to facilitate other physical considerations it is desirable to seek a complete
set of vector fields {Z,|1 <» <3N —4} on M, and express Tin, in terms of them.
However, ;. is not, in general, an integral manifold of the distribution Q determined
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by the normal space (T f#lgu)", i.e. (Tella/n)® # Tollinet. Thus, in general (Z,), are
not in (T#/u)*. Nevertheless, one may use the projector A in (3.11) to project (Z,),
into (T #/u)" and thereby obtain suitable vector fields in terms of which T, can be
expressed. We shall use this construction in § 4.3 where we consider the special case
G =GL"(3, R). In concluding this section we observe that the method presented here
can easily be generalised to other spaces like R*" for arbitrary integer k(cf Eichinger
1977, Vanagas 1977) and other real and complex Riemannian manifolds.

4. G=GL*(3, R) The rotation-vibrational motion

In this section we apply the ideas of the previous sectionto G = GL*(3, R). Wedo thisin
some detail to emphasise the generality of the concepts used and to expose the pitfalls
that may have gone unnoticed in some of the previous derivations. It has been shown
previously (Gulshani and Rowe 1976, 1978, Gulshani 1977, 1978, 1981, Guishani and
Volkov 1981) that the general linear group GL™(3, R) is the kinematical group of
collective monopole and quadrupole vibrations as well as irrotational and rigid rota-
tional motionst. These motions of an N-particle system are realised by identifying the
collective and intrinsic submanifolds of R*™ with the orbits and the orbit space of
GL"(3, R) according to § 2. Now GL*(3, R) is isomorphic to the set of all (3x3)
matrices with positive determinants and so acts naturally in R*™ by matrix multi-
plication. Furthermore, we show in § 4.1, that for this action the isotropy subgroup H
can be chosen the identity element in GL"(3, R)§. The orbit equation (2.11) then
becomes ||

X" = gia(y*)E" (£7) 4.1)

with ,a=1,2,3; Isw=9, 1sn<N, ls0<3N-9 and ge GL*(3, R). We note
that the collective manifold g, i.e. the orbits of GL*(3, R), has dimension nine.
According to § 2 the intrinsic manifold ;. in RN = Moy X Min, is identified with the
orbit space R*Y/GL*(3, R) with % € My, = R®V/GL* (3, R).

4.1. Collective and intrinsic manifolds

We now show that the isotropy subgroup H of GL*(3, R) can be chosen the identity
element in GL*(3, R) and that the orbit space i, = R*~/GL"(3, R) can be identified
with a homogeneous space of the orthogonal group SO(N), called the Grassman

* In fact from the set {X, } in (2.10) one can always construct a set of vector fields which span (T, #g,u)" (see
appendix 1). But this set is, in general, not involutive. It then follows from the Frobenius’ theorem
(Auslander and MacKenzie 1963, p 147, Brickell and Clark 1970, p 197, Matsushima 1972, p 167, Boothby
1975, p 159) that Q is non-integrable, i.e. there is no submanifold of R*™ to which (TeMa/u)" is a tangent
space.

t The more manageable two-dimensional collective motions described by G=GL*(2, R) can be similarly
treated (see Bouten and Van Leuven (1977) for a different treatment).

§ Since the origin is a fixed point of this action, we exclude {0} ¢ R*" as a first step in achieving an effective
action.

Il Although the centre-of-mass motion is excluded from consideration in this paper, it can easily be
incorporated in our journalism here. Its effect on our results here is obtained simply by letting N> N -1
everywhere and regarding all coordinates and momenta to be defined relative to those of the centre of mass (cf
Gulshani and Rowe 1976).
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manifold of 3-planest. An important step in this realisation is to use the vector space
structure on R*" and to recognise (Surkov 1967, Dzyublik et al 1972, Morinigo 1972)
that the 3N coordinates x™ can be regarded as three vectors x’ in an abstract
N-dimensional real vector space R™. The three linearly independent oriented vectors

1 i1 21 N1
X vee X

X
2 = x12 x22 . xNZ (42)
X

define what is known as an oriented 3-frame in R™. Each 3-frame determines a
three-dimensional subspace of R", called a 3-plane. Those 3-frames (4.2) which
determine the same 3-plane, i.e. which are equivalent, are seen to be connected by
GL*(3,R) as in (4.1). This is, of course, an equivalence relation on the set of all
3-frames. The set of all oriented 3-planes, i.e. the set of all three-dimensional subspaces
of R™, can easily be shown, see below, to form a manifold, called the Grassman manifold
of oriented 3-planes denoted by G(3, N) (see Auslander and MacKenzie 1963, p 176,
Brickell and Clark 1970, pp 28, 92, 252, Matsushima 1972, p 241, Boothby 1975,
pp 63, 167)%. It therefore follows that the intrinsic manifold ;. of which % in (4.1) isa
point can be identified with the Grassman manifold of 3-planes G(3, N). With the
interpretation of #;,, as a manifold of oriented 3-planes we see that the isotropy
subgroup H of GL*(3, R) in (4.1) is the identity element§. Therefore, the collective
rotation-vibration submanifold /g, of R*" is identified with the 9-dimensional orbits
of GL*(3, R) as in (4.1).

It is now simple to show that #;,, = G(3, N) is a manifold of dimension 3(N —3)
diffeomorphic to a quotient manifold of the orthogonal group SO(N). Evidently
G(3, N) is a homogeneous space of GL*(N, R) since GL*(N, R) acts transitively on
G(3, N). Thus one can readily identify G(3, N) with a quotient space of GL*(N, R)
(Matsushima 1972, p 241, Boothby 1975, p 167). Instead, however, it is more useful
for practical purposes to use the inner-product structure on R" and identify Min =
G(3, N) with a quotient space of SO(N). Because of the equivalence relation on
G(3, N) given by the action of GL(3, R) in (4.1), an arbitrary 3-plane, i.e. a point of
G(3, N), is equivalent to some oriented orthonormal 3-plane. Anorthonormal 3-plane
defined by (cf. (4.2)) the (3 x N) matrix

fl ill =N1
=z ={x? ... (4.3)
23 213 =N3
satisfies the scalar product
N
x,58)= ) gt =5 a,$=1,2,3. (4.4)
n=1

t It ought to be mentioned that some interesting results on the properties of the intrinsic space have been
obtained by Buck ef al (1979) using the method of dyadics.

1 The properties of Grassman manifolds have been examined in detail in the mathematical literature (see
Wolf 1963, 1967, Porteous 1969).

§ If one identifies #;,,, with the manifold of 3-frames, called the Stiefel manifold, then the isotropy subgroup
of GL*(3, R) is SO(3) (see § 4.3 and appendix 2 for details).



56 P Gulshani and A B Volkov

Now SO(N) acts transitively on G(3, N), via matrix multiplication, taking one
orthonormal 3-plane into anothert. The isotropy subgroup H of SO(N) at the point

;10 - ... 0
w=\0 10 - ... 0)5(1;0)56(3,N),
00 10 ... 0f

where [ is the unit (3 X 3) matrix, is clearly given by

A 0
H:(O B) AeSO(3), BeSON —3)

because w - H=(A|0) is again an orthonormal 3-frame which lies in the 3-plane
determined by w. Since H is isomorphic to the direct product SO(3) x SO(N —-3),
it follows that G@3,N)=M, is diffeomorphic to the quotient manifold
SONNSOB)xSON-3)) of right cosets with dimension=dim SO(N)
~dim SO(3) ~dim SO(N — 3) = 3(N —3) (Clark and Brickell 1972, p 252, Matsushima
1972, p 241, Boothby 1975, p 358).

It then follows from the above arguments that the configuration space R*N decom-
poses into the product RN = M X Mine = GL* (3, R) X G(3, N). Equation (4.1) is then
rewritten as

™ = gioRan, g € GL'(3, R), R € SO(N)\(SO(3) x SO(N —3)) (4.5)
with
RonRpn = 8ap a,B=1,2,3. (4.6)

From equations (4.6) and (4.5) we then have
Q,;=Mx"x" = Mg..gs 4.7)

where Q is the mass quadrupole tensor of the N-particle system. Equation (4.7) defines
in R* only six of the nine matrix elements of g GL*(3, R). The remaining three
elements can be defined in B*™ almost arbitrarily (see § 4.3 for a forbidden choice).

4.2. Collective momenta and kinetic energy

The direct-sum decomposition
TR = Tl ®(Tllar)” (4.8)

for the particle momenta p,; and the corresponding decomposition of the total kinetic
energy into collective and intrinsic parts are now easily obtained from the procedure
given in §4.3. We first need to compute the infinitesimal operators ¢ of GL"(3, R) on
Me1. according to the prescription (2.10). A natural coordinate chart on GL*(3, R) is
given by the elements g; of the matrix ge GL"(3, R). Using the rule (2.10) and

+ Note that this is a right action arising from our choice of the 3-frames to be represented by three rows rather
than three columns (cf (4.3)).
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equation (4.1) (or 4.5)), we have

w=ut(50) =30 e ve)]

=52 ™)

6g,~,- ax nk

4.9)

The set {t;} spans at each x € R*™ the nine-dimensional subspace To#{cy of T.R*™.
Comparing (4.9) with (2.10), we find that the components X ,’-‘," of t; with respect to the
basis {3/9x"*} for T,R*~ are given by

X7 =x"6p. (4.10)

The induced metric A on the GL*(3, R) orbit gy is then computed from (3.3) and
(4.10) to be

P =gty tu) = M Qubin (4.11)
with the inverse
i =MQ¢-715,-1< 4.12)

where Q7! is the inverse of the mass quadrupole tensor Q defined in (4.7). Q! can
easily be expanded in terms of minors to obtain

1
rh =34t a [8:(Tr Q)* =8, Tr Q*—2(Tr Q)Q; +2Q%] (4.13)

whence
det Q =§{(Tr Q)>-3(Tr Q)(Tr Q%) +2 Tr Q°).

From the definition (3.4) and equations (4.10) and (3.12) the projection operator
T=T.R" > Tl

is then given by the (3N X 3N) matrix

Toimi= X h "X T = 8, (4.14a)
where
anEMx"leklx"'k. (4.14b)

From (4.7) and (3.14) we can easily ascertain that I has the requisite properties: it is a
symmetric, idempotent matrix and rank I =Tr ' =9 =dim GL"(3, R) = dim(T#cL).
In (4.14a) we observe the curious splitting of T into the product of the Kronecker deita
function and the (N X N) matrix I'. From (4.14b) it can easily be shown that I is
symmetric and idempotent and rank I' = Tr I'= 3, What geometric property underlies
the splitting in (4.144) is not clear yett.

t As a consequence of this splitting, however, one can easily show that the set of all matrices [in (4.14a) is
diffeomorphic to the Grassman manifold SO(N)\(SO(3) x SO(N —3)).
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The decomposition (4.8) of the particle momentum space is now obtained simply by
substituting (4.14a) into (3.10). One findst

Pui = =it = = LoD & ArimDri = P +pn (4.15a)
where
P = CrmPr = —iAMx " Qi i (4.15b)
and
Anm = 8um = Crm. (4.16)

The corresponding decomposition of the total kinetic energy into collective and
intrinsic parts is obtained by substituting (4.144a) into (3.13). One finds

1
i = nit nmfmi m‘Anm mi
an Mp iCaPrmi & 5 Poi A

= coll+ﬂntr (417a)
where
1 ¢
intr = 277 Pnil nm mi_ mr 17
Tinie =537 PuiLomp Z(p (4.17b)
and
1 _ _
Teon Em PrilnmPui = ‘%hz[tkioklltli +NQikltki]- 4.17¢)

coll

It is important to note the definitions of T.oy and T in (4.17) and their relations to p3;
and pi” in (4.15). Ty = (1/2M) 2, (p'5)? because the term pSS"p™™" = 0 but Toon #
(1/2M) 3, (pi")? because pirpis # 0, the orthogonality condition g(p&", p™¥) =0
notwithstanding.

The physical content of the expressions (4.156) and (4.17¢) for p°°n and Ty is
revealed by a transformation to the mass quadrupole principal axes. These three axes,
which will be indicated by suffixes A, B and C, are given by the diagonalisation of the

symmetric second-rank tensor Q in (4.7}
rairgiQij=8apla A,B=1,23 (4.18)

where 7€ SO(3)/D; and D, the dihedral group (Hamermesh 1962), is the isotropy
discrete subgroup of SO(3) consisting of the identity element and rotations through
angle 7 about each of the three axes leaving the diagonal matrix with elements I
invariant. In (4.18) I, are the three mass quadrupole principal moments defined by

N .
SABIA =M Z anan X"AEI‘A,'X"‘. (4.19)
n=1

The transformation of T, in (4.17¢) to the quadrupole principal axes is clearly
equivalent to choosing on the GL*(3, R) manifold the coordinate system given by the
decomposition (Gantmacher 1960)

Zia =raiSafaq Sa = (Ls/M)'? (4.20)

+ Note that the centre-of-mass projector is N} 8m By
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with g e GL*(3, R) and r, 7 € SO(3)/D,, and repeating the above analysis starting from
(4.9). We have chosen S, in (4.20) so that equations (4.7) and (4.18) are satisfied.
Moreover, for uniqueness of the decomposition (4.20) we choose the ordering I; =1, =
L. With two sets of Euler angles {84} and {¢4} and the three parameters S, as
coordinates the new set of nine infinitesimal operators of GL.*(3, R) are computed from
(2.10), (4.1), (4.20) to be the orbital angular momentum

La= (g;—‘: sjgf,,‘,,)z"“)c — = easclac (4.21a)
the dilation momenta

IAE(rmggf fBaf"")e(,—%:tM (4.21b)
the shear angular momentum

,seAs(rB.-ng-;fff“)e;"’feABc(ff)mth (4.21c)

where ¢ is the permutation symbol and 745 are the principal-axis components of ¢; in
(4.9) defined by

tap ErAirB,-t,-,-Ex"A a/ax"B (4.22)

with x™* given in (3.18) and 8/0x"* =r,4; 3/dx™. The operators in (4.21) are related to
their respective space-fixed components as follows

Li=rala Fi=raifa A =taa =Tailajli (4.23)

Equations (4.21) are seen to be related in a linear manner to the two sets of basis vectors
{La, ta, £a} and {tap} for T, M.

From the basis set of operators in (4.21) one can now construct a projection matrix
operator similar to I in (4.14a) and proceed to obtain p5;" and Teoy in (4.15b) and
(4.17¢) in terms of the operators (4.21). This calculatiog is not reproduced here

<O

because the result is more easily obtained by expressing p,; and T, first in terms of
{tag} and then in terms of the set {L4, t4, La}. The result for T.op isT

Teon= Tyin+ Trot (4.24a)
where
3 ¥ (N-2 & 1 ]
vib=—2#" —5+ + )——] 4.24
Tuw=-24 Az=1 IA[aIi ( 21, BEA In—1Ig) oI, (4.245)
B2 [ In+Ig , ) AVILIg ]
Teor=—— Lag+Fap)————— L 4.24
" 2 AZ:B m( ast+ZLap) TG AL AR ( c)
and
Lap=Lc Fap=%c A, B, C in cyclic order.

In (4.24b) we have used the identity 14 =faa = 21,4 8/0l4 obtained from the chain rule
a/0l4 = (3x™/0I4)(8/8x™) and equations (4.20) and (4.5). The collective kinetic energy

coll

+p52" can be written as a sum of two terms, one describing irrotational and the other rigid flow. The detail of
this has been given elsewhere (Gulshani and Rowe 1976, 1978, Gulshani 1978, Gulshani and Volkov 1981).
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{4.24) has been derived previously by the present authors and others who used
coordinate transformations and different decompositions of R*V and 7,R*" from the
one given here (Zickendraht 1971, Dzyublik et al 1972, Gulshani and Rowe 1976,
Ovcharenko 1976, Vanagas 1977, Gulshani 1978, 1981, Weaver et al 1976, Buck et al
1979). As may be observed T in (4.24) represents physically the kinetic energy of
vibrational and rotational motions. It is also reducible to that of Bohr’s nuclear
collective model (Bohr 1952) as shown previously (Zickendraht 1971, Gulshani and
Rowe 1976, Gulshani 1978, Gulshani and Volkov 1981). With the help of (4.13) the
relation of T,y in (4.24) and (4.17¢) to the spectrum-generating algebras cm(3) ~
RP+gI(3, R ={Q, 1}, gl(3,R)={r} and R°+s50(3)={Q, L} also becomes apparent
(Gulshani and Rowe 1976).

The Hilbert space for the GL"(3, R) collective model (4.17¢) and (4.24) is spanned
by a set of square-integrable functions defined on GL"(3, R). From (4.24) and (4.20)
this set is seen to be given by the functions ¥ (L) Dy (DL (r) where the D are the
Wigner rotation matrices and ¥ some square-integrable functions of I, labelled by
indices A. Because of the invariance with respect to the D; group in (4.20) and (4.24),
the symmetrised basis functions become (cf Bohr 1952, Kumar and Baranger 1967,
Eisenberg and Greiner 1970a, p 147, Bohr and Mottelson 1975, p 178)

Griuxnlg) = £ I Drx (NP (F) + (— D" K7L (VD a-%(P)] (4.25)

with r, 7 SO(3)/D, and g € GL™(3, R). These functions span the irreducible represen-
tation of the group CM(3) obtained by Weaver et al (1976). The functions £ in (4.25),
the collective energy spectrum, the electric quadrupole transition rates, etc are then
calculated from the eigenvalue problem for the collective Hamiltonian H.o =
Teon+ Veon. The collective potential Vi, can be chosen a polynomial in the three
well-known R°®SO(3) invariants [V=TrQ=L+L+L, I?=3TrQ’=
Y+ 3 +13)and IP=}Tr @* =1} + 13 +I3) (Kumar and Baranger 1967, Noack
1968, Eisenberg and Greiner 1970a, p45, Ui 1970, Spencer 1971, Chacén and
Moshinsky 1977). However, because of the complexity of the differential operators
{4.24), calculations for only simple cases have so far been carried out (Zickendraht
1971, Filippov 1974, Filippov and Maksimenko 1975, Gulshani and Volkov 1981).
H..; may also be diagonalised in some approximation using (4.17¢) and the expansion
(4.13) for Q@ (cf Gulshani and Volkov 1981) within an irreducible representation of
the symplectic group Sp(6, R) (Asherova et al 1976) based on Elliot’s SU(3) harmonic
oscillator basis (Elliot 1958, Harvey 1968). This latter recourse has the desirable
feature of being microscopic, i.e. relates the collective eigenstates to those of the
independent particles. Perhaps a more appropriate basis for the diagonalisation of H,,
is provided by an irreducible representation of the direct-product group SU(6) x SO(3).
Here the group SU(6) describes the boson part of H,, obtained by expressing T in
{4.17¢) in terms of the momentum canonically conjugate to Q given by one of the
authors (Gulshani 1978). This description makes a direct contact with and may in fact
generalise the highly successful nuclear Interacting Boson Model (Arima and Iachello
1975, 1976, 1978, lachello 1979) as will be shown in a subsequent paper.

4.3. Intrinsic momenta and kinetic energy

For a unified and consistent formulation of the problem of the intrinsic and the CM(3)
collective motion given in §§ 4.1 and 4.2 it is now necessary to obtain a set of (3N —9)
basis vectors for the normal space ( T.#c )" in (4.8) in terms of a set of vectors {J}on the
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Grassman manifold of 3-planes G(3, N) = M, in (4.5). The aim is then to express pi,,"i"
in (4.15a) and Ty, in (4.17h) in terms of (3N —9) intrinsic vector fields on Min.. With
some caution to avoid pitfalls this can be accomplished rather simply as we now show.
From the rule (2.10) and the diffeomorphism between G(3, N) and SO(NN\(SO(3) x
SO(N —3)) givenin § 4.1 (cf (4.5)) one readily finds that the vector fields {J} on M., are
given by
) i @

F—x PR (4.26)

It ought to be emphasised that J,... are not defined on the SO(N) manifold. But they are
defined on SO(N)N\SO(N —3). This latter circumstance arises from the fact that SO(N)
acts transitively on the set of all oriented orthonormal 3-frames S(3, N)in (4.2) with the
isotropy subgroup SO(N —3). Indeed, from an analysis similar to that given for G(3, N)
in § (4.1) one can show that $(3, N) is a manifold of dimension (3N - 6) diffecomorphic
to the quotient manifold SO(N)\SO(N —3) of right cosets. S(3, N) is known as the
Stiefel manifold of 3-frames (Auslander and MacKenzie 1963, p 175, Brickell and
Clark 1970, pp 92, 253, Warner 1971, p 129)1. Furthermore, we see that G(3, N)
arises from defining the following equivalence relationon S(3, N): x ~y if y =x - r for
reSO(3) and x, y € §(3, N) (see also appendix 2).

Now the vector fields J,... in (4.26) on #,;,,, are not orthogonal {o the vector fields ¢;
in (4.9) on Mq;. because the inner product g(t;, Jom) =x™x™ —x"x™ does not vanish
for i #j. Therefore, Min: = G(3, N) is not an integral manifold of the distribution
determined by (T #Mgr)', ie. (TolloL)" # ToMliny. If one were to require that
(TMor)' = T,G(3, N) as was done previously (Gulshani and Rowe 1976), one would
arrive at the conclusion that every coordinate system on G(3, N) is non-integrable on
R*™ asis shown in appendix 3. However, we can use the g/(3, R) projector A in (4.16) to
project J,, onto the normal space (T,#g.)". Thus the vector fields

fnm = Am‘v‘r’mrﬁ (4-27)
are in (T #aL)" since the scalar product g(ty, Jum) = Apax™x™ =0for all i, j, n and m
by virtue of the relations

[pmx ™ = x™ Apmx™ =0 for all n and j. (4.28)

The result in (4.28) follows readily from the definitions (4.7), (4.145) and (4.16). The
operators (4.27) are then vector fields along but not on (tangent to) ;.= G(3, N).

By means of a simple algebraic manipulation one can now express p;" in (4.15a)
and T, in (4.175) in terms of the intrinsic vector fields (4.27). Substituting the identity
(cf (4.7))

Prmi = MQi' XniXniDmi
into pin™ and using (4.28) one can easily show that

P = A s = ~ iV MQ T (4.29)
where

Jen = Rimdum (4.30)
+ Evidently S(k, N) for any integer k<N is a generalisation of the unit sphere. In particular the unit
N-sphere in R™ is SN¥-1=8(1, N) (cf Vilenkin 1968) and the unit 2-sphere in R’ is $=8(1, 3). A natural

coordinate chart on §(3, N) is then given by generalised spherical coordinates (cf Vilenkin 1968, Dzyublik e
al 1972, Ovcharenko 1976).
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and

Ry =VMQ7}2x™ (4.31)

where J,,, is as in (4.27). Q2 in (4.29) and (4.31) is the inverse of Q"/* defined in
terms of the principal moments I, in (4.18) by

Qif* =raraj(Ia)'? Qy'? =rairaiIa)™. (4.32)
One now uses the commutation relations

oams ™1 = (Smax ™ — 8pax™ (4.33)
and, hence,

[Jums @1=0 forall n, m, i and j (4.34)
to obtain

Tow=s37 & (8 = =97, Q3 T @35)

Transforming (4.35) to the quadrupole principal axes in (4.18) and using the com-
mutators (cf (4.34) and (4.18))

[Jams Lal=[Jum, rai]=0 (4.36)
one obtains

Toe= 302 ¥, = Fa, (4.37)

na Ia

where

fAn = rAifin = Apml Am (4.38)

Jam =RanJm (4.39)
and

Ram=raiRim = (M/L4)"*x™. (4.40)

Equation (4.40) follows directly from (4.32), (4.31) and (4.19).

Geometrically R4, in (4.40) is a point of $(3, N), the Stiefel manifold of orthonor-
mal 3-frames (cf (4.43) below). From the diffeomorphism S(3, N) = SO(NN\SO(N —-3)
established above it follows that R4, are three rows of an (N x N) orthogonal matrix
R e SO(N)\SO(N —3). Furthermore, Ra. effects the transformation from the axes in
R labelled by(n, m,...)to the three principal axes (A, B, C) of the projection matrix I"
in (4.14b). This is seen from the definition of I', which can be rewritten in the form

an = Rinﬁim = R-AnR-Am (441)
and from the fact that I can be brought, up to an ordering of the eigenvalues, to the

diagonal form

r°s(g g) ~R'TR (4.42)

for some R € SO(N)\SO(N —3) with SO(N —3) being the isotropy subgroup of SO(N)
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at T°t. As expected one can easily verify the following properties (cf (4.19), (4.33),
(4.34), (4.36) and (4.40)):

R_AnR'Bn =06aB (4.43)
CwmRam =Ran (4.44)
[Joms Rasl=8miR — 8,3R am. (4.45)
Now using equations (4.16) and (4.43)—(4.45) and the properties
T Amiz = ApmBRam =0 (4.46)
(cf (4.28)), we can simplify the expression (4.37) for T, and obtain
Toe= =123 (2730 -5 Tas) (4.47)
A la B
where
Jap= ﬁAn-R_BmJnm- (4.48)

The expression (4.47) for Ti.. is, however, not in a convenient form because the
operators J 4, are components of J,,, along two different sets of axes: the axes (n, m) in
R" and the three axes (A, B, C) of the N principal axes of I. Clearly one can remedy
this situation by using the remaining (N—3) rows R,,(4<v<N) of the matrix
R e SO(N)\SO(N —3) of which R 4, in (4.40) is the first three rows. But one must now
exercise some caution. The rows R,, have the obvious definition (cf (4.46), (4.43),
(4.41) and (4.16))%

RAR..=0 R..R,.=6,, d<u,v<N (4.49)
Anm = anm - ﬁAnR-Am = R—unR-vm' (450)

Equations (4.49) and (4.50) do not determine R,,, umquely Thus unhke R4, in (4.40),
R,, are not uniquely defined functions of the coordinates x™ on R*. However, the real
difficulty in using R,, in (4.47) is that, for any arbitrarily constructed R, satisfying
(4.49) and (4.50), R,,. do not have simple transformation properties under the action of
Jum in (4.26). For example, it has been shown (Gulshani 1981, appendix 1) that

[Jnma R—vﬁ] # 6mﬁ§vn —8nﬁ§um (451)

in contrast to the transformation properties of R4, in (4.45). Related to the inequality
(4.51) is the nullity, J,,, = R,..,R,mJ,.m =0, of the components of J,,, along (N —3) of the
N principal axes of I" (cf (4.26), (4.28) and (4.50)). This is simply a generalisation of the
situation in R* where the component of the angular momentum along the radius vector
vanishes.

Recalling the distinction between the angular momentum of a single particle and
that of a rigid body in R*§, we now introduce in juxtaposition with J,,,, the infinitesimal
operators K,,,, of SO(N). One can now show (Ovcharenko 1976, and cf SO(3) case§)
that the operators J,,,, and K,,,, become identical when acting on functions ¥ defined on

+ The set of all matrices {T'} is seen to be diffeomorphic to SO(NNSO(N —3).

t R,, are seen to be the (N — 3) eigenvectors of I' and A with eigenvalues zero and unity respectively.

§ The former momentum is defined on SO(3)/SO(2) whereas the latter is defined on SO(3) (see Gulshani
1979 and references therein).
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SONNSO(N —3), te.

Jom¥(R) = K V(R) R e SO(NN\SO(N —3). (4.52)
1t can also be shown that, for any R, e SON),

[Koumo> R 1= 8maRon — 8,iRom (4.53)
(cf (4.51)), From (4.52) and (4.45) we also have

[Kum Ran]= 8miRan = 8.iRom. (4.54)

We can now restrict the action of the operator Ti,. in (4.47)’to function§ defined on
SO(NNSO(N - 3) and use equations (4.52) and (4.53) to simplify Tin. Using the suffix
o to range over both suffixes A and », one then obtains

R_chAo-}i&nKAn \I’(R-)

1

Sz

N _
S IR = L Kan¥(R)=

n=1 n

= i Ki"‘(,\lf(ﬁ)=(Ni3 K34, + Yi‘l Kiw) ¥(R) (4.55)
v=1 B=

=1
where K4, and Kap are I principal-axis components of K,,., defined by
KAv = ﬁAnﬁvanm KAB = RAnR-BmKnm' (456)

To obtain the second line in (4.55) we have used (4.53). Substituting (4.55) into (4.47),
one then readily obtains

T W(R) = —3h° Nf i iKﬁ.,Wi) R e SON)\SO(N —3). (4.57)

v=1 A=1 Ia

It is observed that T, in (4.57) is equally well defined on the (3N —9)-dimensional
Grassman manifold SO(N)\(SO(3) x SO(N —3)). Furthermore, it is seen that only
(3N —9) intrinsic vector fields K4, appear in (4.57) as desiredt. Using (4.19) and the
definition of R4, in (4.40), one can also express the GL*(3, R) infinitesimal operators
Za in (4.21c¢) in terms of J,,, in (4.26). One obtains

Fo = RanRpdum A, B, C in cyclic order. (4.58)

This relation can be understood in terms of the geometrical connection between the
Grassman and the Stiefel manifolds mentioned before (see also appendix 2).

Combining (4.17a), (4.24), and (4.57) and (4.58), we finally obtain, for the total
kinetic energy, the expression

- N-3 3 1 3 32 N—-2 3 1 5
TY(R)= —lhz{ — K%, +4 I [————+( + )——]
( ) 2 :.Z:l AZ=1 IA 4 A=1 4 6]3\ 2IA B;A IA"IB aIA

3 Ia+ 1 41,1, -
# 3 [ 2 (1 ek - e, L LasKas |} ¥R @.59)
Az LIy —1Ig) (Is—1Ip)

T Because R,, in (4.49) and (4.50) is not uniquely defined, we may choose to define it either on SO(N) or
SO(NNSO(N —3). But to satisfy (4.53) R,,, must be defined on SO(N) (cf (4.52) and (4.51)).

fltis seen to be a consequence of {4.51) that the operators K3, in (4.57) cannot be replaced by J%,, where
Ja, = RawR,mJ o in spite of the equality in (4.52) as was pointed out previously (Gulshani 1981),
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where R e SO(N)\SO(N —3). Expression (4.59) has been given before (Gulshani
1981) and is identical tot that derived by Dzyublik et al (1972), Filippov (1974),
Ovcharenko (1976) and Vanagas (1977) who used the chain-rule method and a
different decomposition of R*™ and T, R*" (see appendix 2). T in (4.59) is also similar
to that given by Buck er al (1979) (see appendix 3). One of the merits of the expression
(4.59) is the simple features of 7., made possible by the introduction of the mathema-
tically tractable SO(N) and its quotient manifolds. In this way one has obviated the
difficulties encountered previously in the elimination of redundant coordinates (Lipkin
et al 1955, Lipkin 1958a,b, 1960, Scheid and Greiner 1968, Eisenberg and Greiner
1970b, Villars and Cooper 1970, de Shalit and Feshbach 1974, Herold and Ruder
1979, Herold 1979).

The decomposition of R*" in (4.5) and T in (4.59) into a collective part defined on
GL"(3, R) (respectively GL"(3, R)/SO(3), see (4.58) and appendix 2) and an intrinsic
part on SO(N)\(SO(3) X SO(N —3)) (respectively SO(N)\SO(N —3)) induces a cor-
responding decomposition of the N-particle Hilbert into irreducible subspaces defined
on these manifolds. A complete set of functions for the intrinsic subspace is given by an
irreducible unitary representation @3 of SO(N) restricted to subsets invariant under
SO(3) xSO(N —3) (respectively SO(N —3)) and reduced with respect to the various
SO(N) subgroup chainf, Together with functions (4.25) on GL™(3, R) (respectively
GL"*(3, R)/SO(3))§ a complete set of functions for the N-particle Hilbert space is given
by

W itiixons = 2 ko Ua) [ Daix (N Dl (F) + (1) 5%y, o (0D -2(PIDE(R)
(4.60)
with R € SO(N)\(SO(N —3)) or respectively by

izixons= ¢ @oTa) Dk (NDsix(R) + (D)5 %Y o (ND3i «(R)]  (4.61)

with R € SO(N)\SO(N —3). The reduction of the N-particle Hilbert with respect to the
group SO(N) allows one to take the Pauli principle and hence particle statistics fully
into account. This circumstance arises from the well-known fact that the symmetric
group Sy is a subgroup of O(N). Thus one is now enabled to construct from (4.60) or
(4.61) orbital wavefunctions of the proper permutation symmetry and combine these
with the spin—isospin functions of contragradient symmetry to obtain the total wave-
function. Detailed study of the relevant classification of the N-particle wavefunctions
with respect to the unitary and symplectic groups and their subgroup chains including
O(N) and Sy have been given by a number of authors (Vanagas and Kalinauskas 1974,
Perkauskas er al 1975, Petrauskas and Sabalyauskas 1975, Asherova et al 1976,
Vanagas 1976, 1977). Calculations for only light nuclei have so far been reported
(Filippov and Maksimenko 19785, Filippov et al 1978, 1979).

Appendix 1. Vector fields for the normal space (T fgm)*

From the r tangent vectors (X, ), in (2.10) spanning the r-dimensional subspace T/ /u
of T.R*", one can easily construct a set of (3N —r) basis vectors (Z, ), for (Toflo/m)*.

T A minor difference arises from the centre-of-mass motion which we have ignored here. However, this is
easily taken into account (cf Gulshani and Rowe 1976).

1 These functions generalise the usual spherical harmonics on SO(3)/SO(2) (see, for example, Vilenkin 1968,
Strichartz 1975).

§ As was pointed out in § 3.2 and will be shown in a subsequent work, more convenient collective basis
functions are provided by an irreducible representation of the boson SU(6) group.



66 P Guishani and A B Volkov

The result for r = 3N — 1, i.e. when g,y is a hypersurface in R*", is well known (Synge
and Schild 1961, Lovelock and Rund 1975). A generalisation of this result is immedi-
ate. Denote the components of Z, by Z;' and the pair indices ni by . Then

3N
Z7=Y €omor.o X1 X532, X7 (A.1.1)
k=1

where the permutation symbol ¢ is defined by € 4, 4,...., = (0 if any two suffices are equal;
+1 if the set (o, 02, . . ., o) is a selection from an even/odd permutation of the 3N
integers (1,2, ..., N)). From (A1.1)itis evident that the vector field Z; =Z 7" 8/ax™ is
orthogonal to X, i.e. g(Z;, X,)=0 for all a. From Z, and X, we can now similarly
construct Z, orthogonal to Z; and X, and so on. Thus we obtain (3N —r) vector fields
Z, with components

o o, o, _ o @ w o,
Z,," = 8U.ﬂ»—1---01w1w2---w,—ZV-1IZ0122 PP 21 1le 1,¥22 R X, (A12)

for v =2 where Z7 is given in (A1.1)

Appendix 2. G=GL"(3, R)\SO(3) and G=S0(3)

To obtain the result (4.59) one may also identify the collective submanifold of R*" with
the orbits of the left cosets GL"(3, R)\SO(3) as was done by Zickendraht (1971),
Morinigo (1972), Dzyublik et al (1972), Filippov (1974), Ovcharenko (1976) and
Vanagas (1977). In this case the intrinsic submanifold #;,,, in RN = Mor/so X Ming 18
identified with the Stiefel manifold $(3, N) of oriented orthonormal 3-frames in R™
defined in § 4.3. SO(3) is then the isotropy subgroup of the action of GL*(3, R) on
S(3, N) (cf (4.1) and (4.5)) because it maps one orthonormal 3-frame into another.
From the diffeomorphism S(3, N) = SO(NNSO(N —3) given in § 4.3 one then has the
decomposition {(cf (4.5)) x" =giaRa, with geGL*(3,R)/SO(3) and Re
SO(N)\SO(N —3). But from (4.20) a representative coset in GL*(3, R)/SO(3) is given
by gia = ra:Sa. Therefore the above decomposition of RN is given by

Xni = rA,'SAR_An re 80(3) SA = (IA/M)l/z- (Az'l)

In the corresponding decomposition T, RN =T M or/so @ (Tt gL so)° Dzyublik et al
(1972), Filippov (1974), Ovcharenko (1976) and Vanagas (1977) made the
identification (T gr/s0)° = T.S(3, N) and obtained the result (4.59).

It is then interesting to apply the projection method to (A2.1). For this we have to
make the choice (Tt gr/s0) = (T M 6L/s0)” and construct, from the general formula
(3.4) and the vector fields L4 and t4 on M gyso given in {(4.21a) and (4.215b), the
projector I': T.R*™ - Tl g1 ,s0. With respect to the basis {3/3x ™} for T,R*"™ we obtain

i = T+ Ty (A2.2a)
where

Thiomi= (M/Ia)rairape™ x™* I =MXEgu X, (A2.2b)
In (A2.2b) $™" is the inverse of the rigid-body tensor # defined by

Fu=MX"XY =8, (Tr Q)— O X =eux™. (A2.3)
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Q in (A2.3) is the mass quadrupole tensor in (4.7). Other quantities in (A2.2b) are

givenin (4.18) and (4.19). Itis easy to show that I'in (A2.2a) is a (3N x 3N) symmetric

and, since "¢ - I"® = 0, idempotent. Furthermore, rank I' =6 = dim (T M crs0).
From (3.10) the decomposmon of the particle momenta is then given by

coll pmtr (A24a)
where
p’n,:tr = Am’,mjpmj prct(i)" = Fni,mjpml p::g + p:’zb (A2-4b)
with
Aniymj = 8nmbij — rni,mj P:;lzg = —ifigx Mg I:llLI {A2.4¢)
and
. ihM d
P = — T k" Aty = —2iAMR A" (A2.4d)
IA IA

The corresponding decomposition of the total kinetic energy is then given by (cf (3.13))

T_m me = coll+Tmtr (A25a)
where
1 1
T = 2—M— PriAnimiDmi Teon= '2_1\7[‘ PrilnimiPmi = Trig+ Toiv (A2.5b)
with
1 ” _
Tng M pmrmgmjpmj - %sz iile (A25C)
and
1 ¥ (N-2 & 1 3
Tvi = mr‘:tbm 'm, 2h I [ ( + ) "_‘—] . A2,
° 2Mp P = Az=1 4 aIA IA BgA IA_IB aIA ( Sd)

In deriving (A2.5d) we have used the result

d 3 I
L gm ran™)=N-2+ 3 T
which can be derived from a previous result (Gulshani and Rowe 1976, equation
(2.18)).

We observe that T, in (A2.5d) is identical to that in (4.245). But the rotational
kinetic energy Ty, in (A2.5¢) is that of the rigid body and clearly differs from T, in
(4.24c¢). Infact, T, is expressible as the sum of T;; and other terms involving both I 4
and £ 4 (Gulshani and Rowe 1976). These latter terms must, therefore, be included in
Tine in (A2.5b). Thus an appropriate set of intrinsic vector fields may now be seen to be
some vector fields on SO(3N)2S0(3) xSO(N) so as to involve both L4 and J,... in
(4.26). We have not yet been able to express Tin, in terms of such vector fields and
obtain the resuit (4.59) and thereby establish the equivalence of the approach in this
appendix and that of § 4. Similar difficulty is encountered when we consider the
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rotational motion. For this motion the collective submanifold of R*" is identified with
the orbits of SO(3). The corresponding projector and the decompositions of the
momenta and the kinetic energy are easily discernible in equations (A2.2), (A2.4) and
(A2.5) (cf Gulshani 1981).

Appendix 3. The source of non-integrability

We have seenin § 4.3 that the Grassman manifold of 3-frames G(3, N)is not an integral
manifold of the distribution determined by the normal space (T M), ie. (Tollc) #
T.G(3, N). Here we show that if we require (T )™ = T G(3, N) as was done before
(Gulshani and Rowe 1976), then every coordinate system on G(3, N) is non-integrable
on R*™. Let {g;} and {£°|1 < <3N —9} be a system of coordinates on GL"(3, R) and
G(3, N) respectively. Then equation {4.5) becomes

X g R, (7). (A3.1)

Clearly the infinitesimal operators 1; of GL"(3,R) do not act on R,.¢
SO(NN(SO3) x SO(N ~3)). It then follows that, in the chain-rule expansion

G agu o aE" d
= 4+ -

ax™ A d—g[; Cax™ ('if"- (A3.2)
and hence
ty=x- dn, = x'”ig% —i—* x”"-(?-g—;; -—d;
ax ax " g ax o€
we must have
x"MagT A =0 for ali i, j and o. (A3.3)

1y

Now we canrelate a¢“/dx™ to ax™'/0£” by using the intrinsic metric as follows (Gulshani
and Rowe 1976, appendices [ and III): in terms of an arbitrary complete set of
coordinates in” 1= r<3N}on R*" the metric g on R*N is defined by the arc length

nt nr

_ax ax
S an” et

ds*=dx"™ dx™ dn”dn*=g,,dn" dn*.

Since {n "} is a complete set we have

ax™ anm’
. (nm; = o
an" ax™
and therefore
an* ax™
Qum =T (A3.4)
ax an

Now the requirement that T, be orthogonal to T,G(3,N), i.e. (ToMloL) =
T.G(3, N), implies that the metric g be block diagonal in terms of the coordinates

{gin €71 ie.
o~ (45—
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{Gulshani and Rowe 1976, appendix III). It then follows from equation (A3.4) that

) g& ax ni
ga-a'»axm- = ago . (A3.5)
Multiplying (A3.3) by gs., sSumming over o and using (A3.5), we obtain the constraint
equations

M ——=0. (A3.6)

Equation (A3.6) is made up of two parts: a symmetric part

ox™ o ex™ 8 L

M (x" Y =0 A3.7

o T (A3.7)
and a skew symmetric part

ni

xm_@_’f:i X
T &’
Constraint equations (A3.7) and (A3.8) are separately integrable. (A3.7) is clearly

integrable by virtue of (4.5) and (4.7) and, contrary to the assumption made by Rowe
(1970), (A3.8) has a solution given by

axni/a§<7 = C;ixni

-0. (A3.8)

with C being arbitrary functions of x™. However, (A3.7) and (A3.8) are not
compatible constraints with the result that (A3.6) are not integrable as we now show.
Differentiating (A3.8) with respect to x™ we obtain

axmi axmi ) a2xnj . a2xru'
0=6,' > — Oj U+xm ™ P " ™ e A3.9
“ag T ag ox " * ax™ag (A3.9)
To show that the last two terms in (A3.9) cancel each other consider
; ox™ 98 x™ 88 ni9Ran
ni x — ni g x g ni (A3.10)

X =X X
axmkaga axmk agvaga axmk aga'

where we have used (A3.2) and (4.5). Now the last term in (A3.10) vanishes by virtue of
(A3.6). Assuming that x™ are differentiable functions of £” so that we can interchange
the order of differentiation with respect to £” and £7 in the first term on the right-hand
side of equation (A3.10), we obtain, with repeated use of (A3.6),

xm_ aanj ni afv 82xnj i agv aani
=X =X
axmkafa axmk aé.vaga- axmk afaaf"
v i nj v 2 _ni 2 ni
_8& axMoax™  ag” . dx w 0 x"

—4 x =x ™ =
ax™ g% ag”  ax™ T ag¥ag” ax™ a¢

(A3.11)

where the chain rule (A3.2) is used again to obtain the last equality in (A3.11). From
equations (A3.11) and (A3.9) we then obtain the result

ax™ ax™
0=6u—>—6ix—=
W REY;
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which implies that
ax™/sg” =0 for all m, j and o. (A3.12)

Conditions (A3.12) imply that x™ must be independent of £¢° (i.e. frozen intrinsic
structure) for the constraint equations (A3.6) to be integrable. Otherwise the assump-
tion of differentiability of x™ with respect to £” used in (A3.11) is false and we have the
non-integrability condition:

aflxm 62xr1x

afva‘f(r#agaaé.v'

(A3.13)
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